Hadamard variational formula for eigenvalues of the Stokes equations and its application

被引:0
|
作者
Shuichi Jimbo
Hideo Kozono
Yoshiaki Teramoto
Erika Ushikoshi
机构
[1] Hokkaido University,Department of Mathematics
[2] Waseda University,Department of Mathematics
[3] Setsunan University,Institute for Fundamental Sciences
[4] Yokohama National University,Faculty of Environment and Information Sciences
来源
Mathematische Annalen | 2017年 / 368卷
关键词
35Q10;
D O I
暂无
中图分类号
学科分类号
摘要
Based on the explicit representation of the Hadamard variational formula [1] for eigenvalues of the Stokes equations, we investigate the geometry of the domain in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^3$$\end{document}. It turns out that if the first variation of some eigenvalue of the Stokes equations for all volume preserving perturbations vanishes, then the domain is necessarily diffeomorphic to the 2-dimensional torus T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^2$$\end{document}.
引用
收藏
页码:877 / 884
页数:7
相关论文
共 50 条