Critical dynamics in a real-time formulation of the functional renormalization group

被引:0
|
作者
Johannes V. Roth
Lorenz von Smekal
机构
[1] Justus-Liebig-Universität,Institut für Theoretische Physik
[2] Helmholtz Research Academy Hesse for FAIR (HFHF),undefined
关键词
Finite Temperature or Finite Density; Phase Diagram or Equation of State; Renormalization Group; Stochastic Processes;
D O I
暂无
中图分类号
学科分类号
摘要
We present first calculations of critical spectral functions of the relaxational Models A, B, and C in the Halperin-Hohenberg classification using a real-time formulation of the functional renormalization group (FRG). We revisit the prediction by Son and Stephanov that the linear coupling of a conserved density to the non-conserved order parameter of Model A gives rise to critical Model-B dynamics. We formulate both 1-loop and 2-loop self-consistent expansion schemes in the 1PI vertex functions as truncations of the effective average action suitable for real-time applications, and analyze in detail how the different critical dynamics are properly incorporated in the framework of the FRG on the closed-time path. We present results for the corresponding critical spectral functions, extract the dynamic critical exponents for Models A, B, and C, in two and three spatial dimensions, respectively, and compare the resulting values with recent results from the literature.
引用
收藏
相关论文
共 50 条
  • [1] Critical dynamics in a real-time formulation of the functional renormalization group
    Roth, Johannes, V
    von Smekal, Lorenz
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (10)
  • [2] Spectral functions from the real-time functional renormalization group
    Huelsmann, S.
    Schlichting, S.
    Scior, P.
    PHYSICAL REVIEW D, 2020, 102 (09)
  • [3] Dynamic critical behavior of the chiral phase transition from the real-time functional renormalization group
    Johannes V. Roth
    Yunxin Ye
    Sören Schlichting
    Lorenz von Smekal
    Journal of High Energy Physics, 2025 (1)
  • [4] An introduction to real-time renormalization group
    Schoeller, H
    LOW-DIMENSIONAL SYSTEMS: INTERACTIONS AND TRANSPORT PROPERTIES, 2000, 544 : 137 - 166
  • [5] Real-time renormalization group and strong tunneling
    Schoeller, H
    König, J
    PHYSICA B-CONDENSED MATTER, 2000, 280 (1-4) : 392 - 393
  • [6] CRITICAL DYNAMICS BY REAL-SPACE RENORMALIZATION GROUP
    KINZEL, W
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1978, 29 (04): : 361 - 362
  • [7] REAL-SPACE RENORMALIZATION GROUP FOR CRITICAL DYNAMICS
    ACHIAM, Y
    KOSTERLITZ, JM
    PHYSICAL REVIEW LETTERS, 1978, 41 (02) : 128 - 131
  • [8] From quantum to classical dynamics: The relativistic O(N) model in the framework of the real-time functional renormalization group
    Mesterhazy, D.
    Stockemer, J. H.
    Tanizaki, Y.
    PHYSICAL REVIEW D, 2015, 92 (07):
  • [9] Real time correlation functions and the functional renormalization group
    Pawlowski, Jan M.
    Strodthoff, Nils
    PHYSICAL REVIEW D, 2015, 92 (09):
  • [10] Real-time correlation functions in the O(N) model from the functional renormalization group
    Kamikado, Kazuhiko
    Strodthoff, Nils
    von Smekal, Lorenz
    Wambach, Jochen
    EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (03): : 1 - 10