On the Expected Number of Equilibria in a Multi-player Multi-strategy Evolutionary Game

被引:0
|
作者
Manh Hong Duong
The Anh Han
机构
[1] University of Warwick,Mathematics Institute, Zeeman Building
[2] Teesside University,School of Computing
来源
关键词
Evolutionary game; Multi-player games; Multiple strategies; Random polynomials; Number of equilibria; Random games;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the mean number E(n,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(n,d)$$\end{document} of internal equilibria in a general d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-player n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-strategy evolutionary game where the agents’ payoffs are normally distributed. First, we give a computationally implementable formula for the general case. Next, we characterize the asymptotic behavior of E(2,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(2,d)$$\end{document}, estimating its lower and upper bounds as d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} increases. Then we provide a closed formula for E(n,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(n,2)$$\end{document}. Two important consequences are obtained from this analysis. On the one hand, we show that in both cases, the probability of seeing the maximal possible number of equilibria tends to zero when d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document} or n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, respectively, goes to infinity. On the other hand, we demonstrate that the expected number of stable equilibria is bounded within a certain interval. Finally, for larger n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} and d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}, numerical results are provided and discussed.
引用
收藏
页码:324 / 346
页数:22
相关论文
共 50 条
  • [1] On the Expected Number of Equilibria in a Multi-player Multi-strategy Evolutionary Game
    Manh Hong Duong
    The Anh Han
    [J]. DYNAMIC GAMES AND APPLICATIONS, 2016, 6 (03) : 324 - 346
  • [2] Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games
    Manh Hong Duong
    The Anh Han
    [J]. Journal of Mathematical Biology, 2016, 73 : 1727 - 1760
  • [3] Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games
    Manh Hong Duong
    The Anh Han
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 73 (6-7) : 1727 - 1760
  • [4] On the Expected Number and Distribution of Equilibria in Multi-player Evolutionary Games
    Manh Hong Duong
    The Anh Han
    [J]. ALIFE 2019: THE 2019 CONFERENCE ON ARTIFICIAL LIFE, 2019, : 143 - 144
  • [5] The multi-player evolutionary game analysis for the protective development of ecotourism
    Sun, Yong
    Liu, Baoyin
    Fan, Jie
    Qiao, Qin
    [J]. ENVIRONMENTAL SCIENCE & POLICY, 2021, 126 : 111 - 121
  • [6] Multi-player approximate Nash equilibria
    Czumaj, Artur
    Fasoulakis, Michail
    Jurdzinski, Marcin
    [J]. AAMAS'17: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2017, : 1511 - 1513
  • [7] Risk Dominance Strategy in Imperfect Information Multi-player Game
    Wang, Xuan
    Zhang, Jiajia
    Xu, Xinxin
    Xu, Zhaoyang
    [J]. ISDA 2008: EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 2, PROCEEDINGS, 2008, : 596 - 601
  • [8] Computing Equilibria in Multi-Player Games
    Papadimitriou, Christos H.
    Roughgarden, Tim
    [J]. PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 82 - 91
  • [9] A New Type of Evolutionary Strategy Based on a Multi-player Iterated Prisoner's Dilemma Game
    Nenggang XIE
    Ye YE
    Wei BAO
    Meng WANG
    [J]. Journal of Systems Science and Information, 2020, (01) : 67 - 81
  • [10] Multi-player and multi-choice quantum game
    Du, JF
    Li, H
    Xu, XD
    Zhou, XY
    Han, RD
    [J]. CHINESE PHYSICS LETTERS, 2002, 19 (09) : 1221 - 1224