Harrington’s conservation theorem redone

被引:0
|
作者
Fernando Ferreira
Gilda Ferreira
机构
[1] Universidade de Lisboa,Departamento de Matemática
[2] CMAF,undefined
[3] Universidade de Lisboa,undefined
[4] Queen Mary,undefined
[5] University of London,undefined
来源
关键词
Second-order arithmetic; Weak König’s lemma; Conservativity; Cut-elimination; 03F35; 03F05; 03F07;
D O I
暂无
中图分类号
学科分类号
摘要
Leo Harrington showed that the second-order theory of arithmetic WKL0 is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^1_1}$$\end{document}-conservative over the theory RCA0. Harrington’s proof is model-theoretic, making use of a forcing argument. A purely proof-theoretic proof, avoiding forcing, has been eluding the efforts of researchers. In this short paper, we present a proof of Harrington’s result using a cut-elimination argument.
引用
收藏
页码:91 / 100
页数:9
相关论文
共 50 条