Sedimentary geochemistry mediated by a specific hydrological regime in the water level fluctuation zone of the Three Gorges Reservoir, China

被引:0
|
作者
Dil Khurram
Yuhai Bao
Qiang Tang
Xiubin He
Jinlin Li
Jean de D. Nambajimana
Gratien Nsabimana
机构
[1] Chinese Academy of Sciences,Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment
[2] University of Chinese Academy of Sciences,Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences
[3] Southwest University,Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology
[4] Chinese Academy of Sciences,undefined
关键词
Sedimentary geochemistry; Flow regulation; Suspended sediment; Water level fluctuation zone; Three Gorges Reservoir;
D O I
暂无
中图分类号
学科分类号
摘要
The water level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) acts as an important sink for inflowing suspended sediment loads over the inundation periods following regular dam operations. This study depicts the sedimentary geochemical dynamics along a sedimentary profile based on the determined chronology and explores its links to the specific hydrological regime created by dam flow regulation and riverine seasonal suspended sediment dynamics. A compact 345-cm-long sediment core was extracted near the base water level (145.3 m) from the WLFZ of the TGR and sectioned at 5-cm intervals. Extracted sediment subsamples were analyzed for grain size composition, organic matter (OM), total nitrogen (TN), and geochemical elements (Na, K, Ca, Mg, Pb, Zn, Ni, Co, Mn, Cr, Fe, and Cu). The sediment core chronology was determined using 137Cs elemental analysis. Sedimentary geochemistry and grain size properties of extracted sediment core exhibited greater variations during initial submergence years till the first complete impoundment of the TGR (2006–2010). Afterward (2011–2013), although upstream inflowing suspended sediments and reservoir water level were comparable, sediment deposition and concentrations of sedimentary geochemical constituents showed considerably fewer variations. Seasonal variations in sediment deposition and geochemical composition were also observed during the rainy (October–April) and dry (May–September) seasons, in addition to annual variations. Grain size, OM, and other sediment geochemical constituents all had significant correlations with each other and with sediment core depth. The concentrations of geochemical elements in various sediment stratigraphic layers exhibited staggering associations with each other and were dependent on each other in several ways. The arrangement of geochemical elements in various stratigraphic layers of the extracted core illustrated amalgamation with inputs from upstream seasonal suspended sediment dynamics and reservoir water levels. During shortened submergence periods and higher input sediment loads, geochemical elements demonstrated impulsive distributions. Alternatively, during longer submergence periods, elemental distributions were relatively uniform attributed to higher settling time to deposit according to grain size and geochemical affinities. Higher suspended sediment loads in association with seasonal floods also resulted in rough sediment deposition patterns, imparting variations in the distributions of geochemical elements. Interim mediations in geochemical element concentrations are associated with seasonal distal flash floods and local terrace bank collapses, which generate significant amounts of distal sediment loads that are quickly deposited and are not sorted hydrodynamically. Overall, although a specific mechanism was devised to circumvent the siltation process, a considerable amount of sediment is trapped at pre-dam sites. In addition, siltation caused nutrients and geochemical elements’ enrichment.
引用
收藏
页码:40356 / 40374
页数:18
相关论文
共 50 条
  • [1] Sedimentary geochemistry mediated by a specific hydrological regime in the water level fluctuation zone of the Three Gorges Reservoir, China
    Khurram, Dil
    Bao, Yuhai
    Tang, Qiang
    He, Xiubin
    Li, Jinlin
    Nambajimana, Jean de D.
    Nsabimana, Gratien
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (14) : 40356 - 40374
  • [2] Sediment quality in the water-level-fluctuation-zone of the Three Gorges Reservoir, China
    Cao, Zhijing
    Bao, Yuhai
    [J]. EROSION AND SEDIMENT YIELDS IN THE CHANGING ENVIRONMENT, 2012, 356 : 114 - +
  • [3] Microbial methylation of mercury in the water-level fluctuation zone of the Three Gorges Reservoir, China
    Hoy, Karen S.
    Feng, Wei
    Le, X. Chris
    [J]. JOURNAL OF ENVIRONMENTAL SCIENCES, 2018, 68 : 218 - 220
  • [4] Microbial methylation of mercury in the water-level fluctuation zone of the Three Gorges Reservoir,China
    Karen S.Hoy
    Wei Feng
    X.Chris Le
    [J]. Journal of Environmental Sciences, 2018, 68 (06) : 218 - 220
  • [5] Divergent effects of hydrological alteration and nutrient addition on greenhouse gas emissions in the water level fluctuation zone of the Three Gorges Reservoir, China
    Shi, Wenjun
    Du, Ming
    Ye, Chen
    Zhang, Quanfa
    [J]. WATER RESEARCH, 2021, 201
  • [6] Application of 210Pbex in elucidating contemporary sedimentary dynamics in the water-level fluctuation zone of the Three Gorges Reservoir, China
    Li, Jinlin
    Bao, Yuhai
    Wei, Jie
    He, Xiubin
    Zhang, Xinbao
    Tang, Qiang
    Wu, Shengjun
    Huang, Ping
    Li, Hong
    [J]. CATENA, 2023, 229
  • [7] Assessment of cytotoxicity and AhR-mediated toxicity of sediments from water level fluctuation zone in the Three Gorges Reservoir, China
    Lingling Wu
    Li Liu
    Tilman Floehr
    Thomas-Benjamin Seiler
    Ling Chen
    Xingzhong Yuan
    Henner Hollert
    [J]. Journal of Soils and Sediments, 2016, 16 : 2166 - 2173
  • [8] Assessment of cytotoxicity and AhR-mediated toxicity of sediments from water level fluctuation zone in the Three Gorges Reservoir, China
    Wu, Lingling
    Liu, Li
    Floehr, Tilman
    Seiler, Thomas-Benjamin
    Chen, Ling
    Yuan, Xingzhong
    Hollert, Henner
    [J]. JOURNAL OF SOILS AND SEDIMENTS, 2016, 16 (08) : 2166 - 2173
  • [9] Revegetation impacts soil nitrogen dynamics in the water level fluctuation zone of the Three Gorges Reservoir, China
    Ye, Chen
    Cheng, Xiaoli
    Liu, Wenzhi
    Zhang, Quanfa
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2015, 517 : 76 - 85
  • [10] Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir, China
    Tang, Qiang
    Bao, Yuhai
    He, Xiubin
    Fu, Bojie
    Collins, Adrian L.
    Zhang, Xinbao
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 548 : 410 - 420