The Existence of Partially Localized Periodic–Quasiperiodic Solutions and Related KAM-Type Results for Elliptic Equations on the Entire Space

被引:0
|
作者
Peter Poláčik
Darío A. Valdebenito
机构
[1] University of Minnesota,School of Mathematics
[2] University of Tennessee,Department of Mathematics
关键词
Elliptic equations; Entire solutions; Quasiperiodic solutions; Partially localized solutions; Center manifold; KAM theorems; 35J61; 35B08; 35B09; 35B10; 35B15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the equation 1Δxu+uyy+f(u)=0,x=(x1,⋯,xN)∈RN,y∈R,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta _x u+u_{yy}+f(u)=0,\quad x=(x_1,\dots ,x_N)\in {{\mathbb {R}}}^N,\ y\in {{\mathbb {R}}}, \end{aligned}$$\end{document}where N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document} and f is a sufficiently smooth function satisfying f(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(0)=0$$\end{document}, f′(0)<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(0)<0$$\end{document}, and some natural additional conditions. We prove that equation (1) possesses uncountably many positive solutions (disregarding translations) which are radially symmetric in x′=(x1,…,xN-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x'=(x_1,\ldots ,x_{N-1})$$\end{document} and decaying as |x′|→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x'|\rightarrow \infty $$\end{document}, periodic in xN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_N$$\end{document}, and quasiperiodic in y. Related theorems for more general equations are included in our analysis as well. Our method is based on center manifold and KAM-type results.
引用
收藏
页码:3035 / 3056
页数:21
相关论文
共 10 条