On the scalarization method in cone metric spaces

被引:0
|
作者
A. P. Farajzadeh
机构
[1] Razi University,Department of Mathematics
来源
Positivity | 2014年 / 18卷
关键词
Cone metric space; Nonlinear scalarization function; 47H05; 47H10; 46B40;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Du (J Nonlinear Anal 72:2259–2261, 2010) by using a nonlinear scalarization function, in the setting of locally convex topological vector spaces, could transfer a cone metric space to a usual metric space. Simultaneously, Amini-Harandi and Fakhar (Com Math Appl 59:3529–3534, 2010) by using a notion of base for the cone , in the setting of Banach spaces, could do the same. In this note we will see that two methods coincide and moreover they are valid for topological vector spaces and it is not necessary that we only consider the cones which have a compact base. Finally, it is worth noting that the nature of this note is similar to Caglar and Ercan (Order-unit-metric spaces, arXiv:1305.6070 [math.FA], 2013).
引用
收藏
页码:703 / 708
页数:5
相关论文
共 50 条
  • [1] On the scalarization method in cone metric spaces
    Farajzadeh, A. P.
    POSITIVITY, 2014, 18 (04) : 703 - 708
  • [2] Fixed point theory in cone metric spaces obtained via the scalarization method
    Amini-Harandi, A.
    Fakhar, M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (11) : 3529 - 3534
  • [3] THE EQUIVALENCE OF CONE METRIC SPACES AND METRIC SPACES
    Feng, Yuqiang
    Mao, Wei
    FIXED POINT THEORY, 2010, 11 (02): : 259 - 263
  • [4] On partial metric spaces and partial cone metric spaces
    Moshokoa, Seithuti
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (06): : 1069 - 1075
  • [5] On Equivalent Cone Metric Spaces
    Olmez, O.
    Aytar, S.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 65 (12) : 1898 - 1903
  • [6] On the metrizability of cone metric spaces
    Khani, M.
    Pourmahdian, M.
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (02) : 190 - 193
  • [7] On cone metric spaces: A survey
    Jankovic, Slobodanka
    Kadelburg, Zoran
    Radenovic, Stojan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (07) : 2591 - 2601
  • [8] COMPLETION OF CONE METRIC SPACES
    Abdeljawad, Thabet
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (01): : 67 - 74
  • [9] Results with cone metric spaces
    Bhardwaj, Ramakant
    Khaindait, Sneha. A.
    Komal, Somayya
    Sharma, Vipin
    Kabir, Qazi Aftab
    Konar, Pulak
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 6987 - 6990
  • [10] On Equivalent Cone Metric Spaces
    Ö. Ölmez
    S. Aytar
    Ukrainian Mathematical Journal, 2014, 65 : 1898 - 1903