Some Remarks on Perov Type Mappings in Cone Metric Spaces

被引:0
|
作者
Stojan Radenović
Francesca Vetro
机构
[1] Ton Duc Thang University,Nonlinear Analysis Research Group
[2] Ton Duc Thang University,Faculty of Mathematics and Statistics
[3] University of Palermo,Department of Energy, Information Engineering and Mathematical Models (DEIM)
来源
关键词
Cone metric space; Perov’s operator; Property (P); Quasi-contraction; Spectral radius; Primary 47H10; Secondary 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
Let E,C,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( E,C,t\right) $$\end{document} be a real ordered topological vector space and let (X, d) be a tvs-cone metric space over cone C. Using Proposition 19.9 of Deimling (Nonlinear functional analysis, Springer, Berlin, 1985), we show that E can be equipped with a norm such that C is a normal monotone solid cone. Hence, a tvs-cone metric space X,d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( X,d\right) $$\end{document} over a solid cone C is a normal cone metric space over the same cone C. This assures that tvs-cone metric spaces are not a genuine generalization of cone metric spaces introduced by Huang and Zhang, recently. Further, if the cone C is solid then we have only cone metric spaces over normal solid cone (with coefficient of normality K=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=1$$\end{document}). Here, we introduce also the notion of Sehgal–Guseman–Perov type mappings and we establish a result of existence and uniqueness of fixed points for this class of mappings.
引用
收藏
相关论文
共 50 条
  • [1] Some Remarks on Perov Type Mappings in Cone Metric Spaces
    Radenovic, Stojan
    Vetro, Francesca
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (06)
  • [2] Some significant remarks on multivalued Perov type contractions on cone metric spaces with a directed graph
    Savic, Ana
    Fabiano, Nicola
    Mirkov, Nikola
    Sretenovic, Aleksandra
    Radenovic, Stojan
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 187 - 198
  • [3] Some results of Perov type in rectangular cone metric spaces
    Vetro, Francesca
    Radenovic, Stojan
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01)
  • [4] Some results of Perov type in rectangular cone metric spaces
    Francesca Vetro
    Stojan Radenović
    [J]. Journal of Fixed Point Theory and Applications, 2018, 20
  • [5] Common fixed point results of Perov type contractive mappings in D*-cone metric spaces
    Abbas, Mujahid
    Rakocevic, Vladimir
    Noor, Zahra
    [J]. JOURNAL OF ANALYSIS, 2021, 29 (03): : 685 - 700
  • [6] Some remarks on expansive mappings in metric spaces
    Popescu, Ovidiu
    Pacurar, Cristina Maria
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2024, 40 (03) : 717 - 725
  • [7] Perov type T-contractive mappings on cone b-metric spaces with generalized c-distance
    Nazir, Talat
    Abbas, Mujahid
    Silvestrov, Sergei
    [J]. AFRIKA MATEMATIKA, 2024, 35 (03)
  • [8] A coincidence-point problem of Perov type on rectangular cone metric spaces
    Tchier, Fairouz
    Vetro, Calogero
    Vetro, Francesca
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4307 - 4317
  • [9] Remarks on Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings
    MohamedA Khamsi
    [J]. Fixed Point Theory and Applications, 2010
  • [10] Remarks on Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings
    Khamsi, Mohamed A.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2010,