Revisiting the cosmic distance duality relation with machine learning reconstruction methods: the combination of HII galaxies and ultra-compact radio quasars

被引:0
|
作者
Tonghua Liu
Shuo Cao
Sixuan Zhang
Xiaolong Gong
Wuzheng Guo
Chenfa Zheng
机构
[1] Yangtze University,School of Physics and Optoelectronic
[2] Beijing Normal University,Department of Astronomy
[3] Beijing Normal University at Zhuhai,Advanced Institute of Natural Sciences
[4] Hiroshima University,Graduate School of Advanced Science and Engineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we carry out an assessment of cosmic distance duality relation (CDDR) based on the latest observations of HII galaxies acting as standard candles and ultra-compact structure in radio quasars acting as standard rulers. Particularly, two machine learning reconstruction methods [Gaussian Process (GP) and Artificial Neural Network (ANN)] are applied to reconstruct the Hubble diagrams from observational data. We show that both approaches are capable of reconstructing the current constraints on possible deviations from the CDDR in the redshift range z∼2.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\sim 2.3$$\end{document}. Considering four different parametric methods of CDDR, which quantify deviations from the CDDR and the standard cosmological model, we compare the results of the two different machine learning approaches. It is observed that the validity of CDDR is in well agreement with the current observational data within 1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\sigma $$\end{document} based on the reconstructed distances through GP in the overlapping redshift domain. Moreover, we find that ultra-compact radio quasars could provide 10-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-3}$$\end{document}-level constraints on the violation parameter at high redshifts, when combined with the observations of HII galaxies. In the framework of ANN, one could derive robust constraints on the violation parameter at a precision of 10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-2}$$\end{document}, with the validity of such distance duality relation within 2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\sigma $$\end{document} confidence level.
引用
收藏
相关论文
共 4 条
  • [1] Revisiting the cosmic distance duality relation with machine learning reconstruction methods: the combination of HII galaxies and ultra-compact radio quasars
    Liu, Tonghua
    Cao, Shuo
    Zhang, Sixuan
    Gong, Xiaolong
    Guo, Wuzheng
    Zheng, Chenfa
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (10):
  • [2] Ultra-compact structure in radio quasars as a cosmological probe: a revised study of the interaction between cosmic dark sectors
    Zheng, Xiaogang
    Biesiada, Marek
    Cao, Shuo
    Qi, Jingzhao
    Zhu, Zong-Hong
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (10):
  • [3] Cosmological-model-independent tests of cosmic distance duality relation with Type Ia supernovae and radio quasars
    He, Yuan
    Pan, Yu
    Shi, Dong-Ping
    Cao, Shuo
    Yu, Wen-Jie
    Diao, Jing-Wang
    Qian, Wei-Liang
    [J]. CHINESE JOURNAL OF PHYSICS, 2022, 78 : 297 - 307
  • [4] Machine learning forecasts of the cosmic distance duality relation with strongly lensed gravitational wave events
    Arjona, Ruben
    Lin, Hai-Nan
    Nesseris, Savvas
    Tang, Li
    [J]. PHYSICAL REVIEW D, 2021, 103 (10)