On representations distinguished by unitary groups

被引:0
|
作者
Brooke Feigon
Erez Lapid
Omer Offen
机构
[1] The City College of New York,Department of Mathematics
[2] The Hebrew University of Jerusalem,Institute of Mathematics
[3] Technion-Israel Institute of Technology,Department of Mathematics
来源
关键词
Parabolic Subgroup; Eisenstein Series; Quadratic Extension; Levi Subgroup; Cuspidal Representation;
D O I
暂无
中图分类号
学科分类号
摘要
Let E/F be a quadratic extension of number fields. We study periods and regularized periods of cusp forms and Eisenstein series on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname {GL}_{n}( \mathbf {A}_{E})$\end{document} over a unitary group of a Hermitian form with respect to E/F. We provide factorization for these periods into locally defined functionals, express these factors in terms of suitably defined local periods and characterize global distinction. We also study in detail the analogous local question and analyze the space of invariant linear forms under a unitary group.
引用
收藏
页码:185 / 323
页数:138
相关论文
共 50 条