Cosmic acceleration in the Randall-Sundrum II brane world

被引:0
|
作者
Binayak S. Choudhury
Himadri Shekhar Mondal
Devosmita Chatterjee
机构
[1] Science & Technology,Department of Basic & Applied Sciences, Indian Institute of Engineering
[2] Shibpur,Department of Mathematics
[3] Midnapore College (Autonomous),undefined
来源
The European Physical Journal Plus | / 134卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we implement the dynamical system tools to study the dynamics of a self-interacting scalar field for suitable interactions of dark energy and dark matter in the Randall-Sundrum II brane scenario. Here we investigate three distinct forms of interaction strength namely, Iϕ=αρϕ˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{\phi}=\alpha\dot{\rho_{\phi}}$\end{document}, Im1=δϕ˙ρm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{m1}=\delta \dot{\phi} \rho_{m}$\end{document} and Im2=σϕ˙2ρmH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$I_{m2}=\frac{\sigma\dot{\phi}^{2} \rho_{m}}{H}$\end{document}. We consider a homogeneous and isotropic Friedmann-Robertson-Walker brane model. The transformation equations are simplified to an autonomous system of ordinary differential equations by a suitable change of variables and hence a dynamical system analysis is performed for the respective interacting models in RS II brane cosmology. During the dynamical system analysis, we use the linear stability theory to study the stability of hyperbolic points, but these linearization techniques fail for non-hyperbolic points. So we apply the center manifold theory to determine the stability of non-hyperbolic points. For these specific interaction strengths, the 3D and 4D dynamical system analysis infers the existence of late-time attractors. These attractors are found for constant potential and inverse power law potential. The presence of these attractors results in late-time cosmic acceleration.
引用
收藏
相关论文
共 50 条
  • [1] Cosmic acceleration in the Randall-Sundrum II brane world
    Choudhury, Binayak S.
    Mondal, Himadri Shekhar
    Chatterjee, Devosmita
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [2] Randall-Sundrum choice in the brane world
    Myung, YS
    Kang, GW
    Lee, HW
    PHYSICS LETTERS B, 2000, 478 (1-3) : 294 - 298
  • [3] Tunnelling into the Randall-Sundrum brane world
    Gorsky, A
    Selivanov, K
    PHYSICS LETTERS B, 2000, 485 (1-3) : 271 - 277
  • [4] Gravity in the Randall-Sundrum brane world
    Garriga, J
    Tanaka, T
    PHYSICAL REVIEW LETTERS, 2000, 84 (13) : 2778 - 2781
  • [5] Gravity in Randall-Sundrum brane world revisited
    Kakushadze, Z
    PHYSICS LETTERS B, 2001, 497 (1-2) : 125 - 135
  • [6] Cosmology in the Randall-Sundrum brane world scenario
    Stoica, H
    Tye, SHH
    Wasserman, I
    PHYSICS LETTERS B, 2000, 482 (1-3) : 205 - 212
  • [7] Randall-Sundrum brane tensions
    Cvetic, M
    Duff, MJ
    Liu, JT
    Lü, H
    Pope, CN
    Stelle, KS
    NUCLEAR PHYSICS B, 2001, 605 (1-3) : 141 - 158
  • [8] Effective gravity in Randall-Sundrum infinite brane world
    Tanaka, T
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (11) : 2287 - 2297
  • [9] Cosmological expansion in the Randall-Sundrum brane world scenario
    Flanagan, EE
    Tye, SHH
    Wasserman, I
    PHYSICAL REVIEW D, 2000, 62 (04) : 1 - 6
  • [10] Semiclassical instability of the brane-world: Randall-Sundrum bubbles
    Ida, D
    Shiromizu, T
    Ochiai, H
    PHYSICAL REVIEW D, 2002, 65 (02)