Finite piecewise polynomial parametrization of plane rational algebraic curves

被引:0
|
作者
S. Pérez-Díaz
J. R. Sendra
C. Villarino
机构
[1] Universidad de Alcalá,Dpto. de Matemáticas
关键词
Piecewise polynomial parametrization; Rational algebraic curves; Error analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We present an algorithm with the following characteristics: given a real non-polynomial rational parametrization \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}(t)}$$\end{document} of a plane curve and a tolerance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon > 0}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} is decomposed as union of finitely many intervals, and for each interval I of the partition, with the exception of some isolating intervals, the algorithm generates a polynomial parametrization \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_{I}(t)}$$\end{document} . Moreover, as an option, one may also input a natural number N and then the algorithm returns polynomial parametrizations with degrees smaller or equal to N. In addition, we present an error analysis where we prove that the curve piece \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal C}_{I}=\{\mathcal{P}(t)\,|\,t\in I\}}$$\end{document} is in the offset region of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal C}_{I}^{\ast}=\{\mathcal{P}_{I}(t)\,|\,t\in I\}}$$\end{document} at distance at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sqrt{2}\epsilon}$$\end{document} , and conversely.
引用
收藏
页码:91 / 105
页数:14
相关论文
共 50 条
  • [1] Finite piecewise polynomial parametrization of plane rational algebraic curves
    Perez-Diaz, S.
    Sendra, J. R.
    Villarino, C.
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2007, 18 (1-2) : 91 - 105
  • [2] Rational parametrization of conchoids to algebraic curves
    J. Sendra
    J. R. Sendra
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2010, 21 : 285 - 308
  • [3] Rational parametrization of conchoids to algebraic curves
    Sendra, J.
    Sendra, J. R.
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2010, 21 (04) : 285 - 308
  • [4] Approximate parametrization of plane algebraic curves by linear systems of curves
    Perez-Diaz, Sonia
    Rafael Sendra, J.
    Rueda, Sonia L.
    Sendra, Juana
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (02) : 212 - 231
  • [5] PIECEWISE RATIONAL APPROXIMATIONS OF REAL ALGEBRAIC CURVES
    C.L. Bajaj1)(Department of Computer Science
    [J]. Journal of Computational Mathematics, 1997, (01) : 55 - 71
  • [6] Piecewise rational approximations of real algebraic curves
    Bajaj, CL
    Xu, GL
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (01) : 55 - 71
  • [7] Parametrization of ε-Rational Curves
    Perez-Diaz, Sonia
    Rafael Sendra, J.
    Rueda, Sonia L.
    Sendra, Juana
    [J]. SNC'09: PROCEEDINGS OF THE 2009 INTERNATIONAL WORKSHOP ON SYMBOLIC-NUMERIC COMPUTATION, 2009, : 199 - 200
  • [8] Algebraic invariant curves of plane polynomial differential systems
    Tsygvintsev, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 663 - 672
  • [9] Rational quadratic approximation to real plane algebraic curves
    Gao, XS
    Ming, L
    [J]. GEOMETRIC MODELING AND PROCESSING 2004, PROCEEDINGS, 2004, : 93 - 102
  • [10] ISOMETRIC PIECEWISE POLYNOMIAL CURVES
    FIUME, E
    [J]. COMPUTER GRAPHICS FORUM, 1995, 14 (01) : 47 - 58