The Regular Spectrum of Upper Triangular Closed Operator Matrices

被引:0
|
作者
Qingmei Bai
Alatancang Chen
机构
[1] Hohhot Minzu College,School of Mathematics and Big Data
[2] Inner Mongolia Normal University,School of Mathematical Science
来源
关键词
Closed operator; upper triangular operator matrix; completion problem; regular spectrum; 47A25; 47A55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some sufficient and necessary conditions for TB=AB0D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{B}=\begin{bmatrix}A &{} B\\ 0 &{} D \\ \end{bmatrix}$$\end{document} in H⊕K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal H \oplus \mathcal K$$\end{document} to be Kato nonsingular for some closable operator B with D(B)⊃D(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal D(B)\supset \mathcal D(D)$$\end{document} are characterized, where A and D are given closed operators, and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal H$$\end{document} and K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal K$$\end{document} are Hilbert spaces. The properties of regular spectrum σg(TB)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{g}(T_{B})$$\end{document} of closed operator matrix TB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{B}$$\end{document} are also studied and some sufficient and necessary conditions for σg(TB)=σg(A)∪σg(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{g}(T_{B})=\sigma _{g}(A)\cup \sigma _{g}(D)$$\end{document} are given. In addition, the corresponding properties of regular spectrum of upper triangular Hamiltonian operator matrix are obtained.
引用
收藏
相关论文
共 50 条
  • [1] The Regular Spectrum of Upper Triangular Closed Operator Matrices
    Bai, Qingmei
    Chen, Alatancang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)
  • [2] Weyl Spectrum of Upper Triangular Operator Matrices
    Xiu Feng Wu
    Jun Jie Huang
    Acta Mathematica Sinica, English Series, 2020, 36 : 783 - 796
  • [3] Weyl Spectrum of Upper Triangular Operator Matrices
    Xiu Feng WU
    Jun Jie HUANG
    ActaMathematicaSinica, 2020, 36 (07) : 783 - 796
  • [4] Weyl Spectrum of Upper Triangular Operator Matrices
    Xiu Feng WU
    Jun Jie HUANG
    Acta Mathematica Sinica,English Series, 2020, 36 (07) : 783 - 796
  • [5] Essential spectrum of upper triangular operator matrices
    Wu, Xiufeng
    Huang, Junjie
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (03) : 780 - 798
  • [6] Weyl Spectrum of Upper Triangular Operator Matrices
    Wu, Xiu Feng
    Huang, Jun Jie
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (07) : 783 - 796
  • [7] Essential spectrum of upper triangular operator matrices
    Xiufeng Wu
    Junjie Huang
    Annals of Functional Analysis, 2020, 11 : 780 - 798
  • [8] Browder spectra of closed upper triangular operator matrices
    Bai, Qingmei
    Chen, Alatancang
    Gao, Jingying
    AIMS MATHEMATICS, 2024, 9 (02): : 5110 - 5121
  • [9] The Residual Spectrum and the Continuous Spectrum of Upper Triangular Operator Matrices
    Hai, Guojun
    Chen, Alatancang
    FILOMAT, 2014, 28 (01) : 65 - 71
  • [10] The Point Spectrum and Residual Spectrum of Upper Triangular Operator Matrices
    Wu, Xiufeng
    Huang, Junjie
    Chen, Alatancang
    FILOMAT, 2019, 33 (06) : 1759 - 1771