Penalized least squares approximation methods and their applications to stochastic processes

被引:0
|
作者
Takumi Suzuki
Nakahiro Yoshida
机构
[1] University of Tokyo,Graduate School of Mathematical Sciences
[2] Japan Science and Technology Agency,CREST
关键词
Variable selection; Least squares approximation; Cox process; Diffusion type process;
D O I
暂无
中图分类号
学科分类号
摘要
We construct an objective function that consists of a quadratic approximation term and an Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} penalty (0<q≤1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0<q\le 1)$$\end{document} term. Thanks to the quadratic approximation, we can deal with various kinds of loss functions into a unified way, and by taking advantage of the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} penalty term, we can simultaneously execute variable selection and parameter estimation. In this article, we show that our estimator has oracle properties, and even better property. We also treat stochastic processes as applications.
引用
收藏
页码:513 / 541
页数:28
相关论文
共 50 条
  • [1] Penalized least squares approximation methods and their applications to stochastic processes
    Suzuki, Takumi
    Yoshida, Nakahiro
    [J]. JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2020, 3 (02) : 513 - 541
  • [2] Penalized least squares regression methods and applications to neuroimaging
    Bunea, Florentina
    She, Yiyuan
    Ombao, Hernando
    Gongvatana, Assawin
    Devlin, Kate
    Cohen, Ronald
    [J]. NEUROIMAGE, 2011, 55 (04) : 1519 - 1527
  • [3] Source Localization using Stochastic Approximation and Least Squares Methods
    Sahyoun, Samir S.
    Djouadi, Seddik M.
    Qi, Hairong
    Drira, Anis
    [J]. INTELLIGENT SYSTEMS AND AUTOMATION, 2009, 1107 : 59 - 64
  • [4] APPLICATIONS OF LEAST SQUARES METHODS
    OPFELL, JB
    [J]. INDUSTRIAL AND ENGINEERING CHEMISTRY, 1959, 51 (02): : 226 - 226
  • [5] APPLICATIONS OF LEAST SQUARES METHODS
    OPFELL, JB
    SAGE, BH
    [J]. INDUSTRIAL AND ENGINEERING CHEMISTRY, 1958, 50 (05): : 803 - 806
  • [6] PENALIZED LEAST SQUARES METHODS FOR SOLVING THE EEG INVERSE PROBLEM
    Vega-Hernandez, Mayrim
    Martinez-Montes, Eduardo
    Sanchez-Bornot, Jos M.
    Lage-Castellanos, Agustin
    Valdes-Sosa, Pedro A.
    [J]. STATISTICA SINICA, 2008, 18 (04) : 1535 - 1551
  • [7] Numerical methods for estimating the tuning parameter in penalized least squares problems
    Koukouvinos, Christos
    Lappa, Angeliki
    Mitrouli, Marilena
    Roupa, Paraskevi
    Turek, Ondrej
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (04) : 1542 - 1563
  • [8] Penalized partial least squares for pleiotropy
    Camilo Broc
    Therese Truong
    Benoit Liquet
    [J]. BMC Bioinformatics, 22
  • [9] Penalized partial least squares for pleiotropy
    Broc, Camilo
    Truong, Therese
    Liquet, Benoit
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)
  • [10] Nonparametric least squares methods for stochastic frontier models
    Léopold Simar
    Ingrid Van Keilegom
    Valentin Zelenyuk
    [J]. Journal of Productivity Analysis, 2017, 47 : 189 - 204