On the Lp discrepancy of two-dimensional folded Hammersley point sets

被引:0
|
作者
Takashi Goda
机构
[1] The University of Tokyo,Graduate School of Engineering
来源
Archiv der Mathematik | 2014年 / 103卷
关键词
discrepancy; Hammersley point sets; -adic baker’s transformation; Niederreiter–Rosenbloom–Tsfasman weight; Dick weight; Primary 11K38; Secondary 11K06;
D O I
暂无
中图分类号
学科分类号
摘要
We give an explicit construction of two-dimensional point sets whose Lp discrepancy is of best possible order for all 1≤p≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 \le p \le \infty}$$\end{document}. It is provided by folding Hammersley point sets in base b by means of the b-adic baker’s transformation which has been introduced by Hickernell (Monte Carlo and quasi-Monte Carlo methods. Springer, Berlin, 274–289, 2002) for b =  2 and Goda, Suzuki, and Yoshiki (The b-adic baker’s transformation for quasi-Monte Carlo integration using digital nets. arXiv:1312.5850 [math:NA], 2013) for arbitrary b∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b \in \mathbb{N}}$$\end{document}, b≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b \ge 2}$$\end{document}. We prove that both the minimum Niederreiter–Rosenbloom–Tsfasman weight and the minimum Dick weight of folded Hammersley point sets are large enough to achieve the best possible order of Lp discrepancy for all 1≤p≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1 \le p \le \infty}$$\end{document}.
引用
收藏
页码:389 / 398
页数:9
相关论文
共 50 条
  • [1] Lp discrepancy of generalized two-dimensional Hammersley point sets
    Henri Faure
    Friedrich Pillichshammer
    Monatshefte für Mathematik, 2009, 158 : 31 - 61
  • [2] On the L p discrepancy of two-dimensional folded Hammersley point sets
    Goda, Takashi
    ARCHIV DER MATHEMATIK, 2014, 103 (04) : 389 - 398
  • [3] L p discrepancy of generalized two-dimensional Hammersley point sets
    Faure, Henri
    Pillichshammer, Friedrich
    MONATSHEFTE FUR MATHEMATIK, 2009, 158 (01): : 31 - 61
  • [4] L2 discrepancy of generalized two-dimensional Hammersley point sets scrambled with arbitrary permutations
    Faure, Henri
    Pillichshammer, Friedrich
    Pirsic, Gottlieb
    Schmid, Wolfgang Ch.
    ACTA ARITHMETICA, 2010, 141 (04) : 395 - 418
  • [5] L2 Discrepancy of Two-Dimensional Digitally Shifted Hammersley Point Sets in Base b
    Faure, Henri
    Pillichshammer, Friedrich
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 355 - +
  • [6] On the Lp-discrepancy of the Hammersley point set
    Pillichshammer, F
    MONATSHEFTE FUR MATHEMATIK, 2002, 136 (01): : 67 - 79
  • [7] Improvements on low discrepancy one-dimensional sequences and two-dimensional point sets
    Faure, Henri
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2006, 2008, : 327 - 341
  • [8] Point sets with low Lp-discrepancy
    Kritzer, Peter
    Pillichshammer, Friedrich
    MATHEMATICA SLOVACA, 2007, 57 (01) : 11 - 32
  • [9] A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets
    Peter Kritzer
    Gerhard Larcher
    Friedrich Pillichshammer
    Annali di Matematica Pura ed Applicata, 2007, 186 : 229 - 250
  • [10] A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets
    Kritzer, Peter
    Larcher, Gerhard
    Pillichshammer, Friedrich
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (02) : 229 - 250