Joint Functional Calculus for Definitizable Self-adjoint Operators on Krein Spaces

被引:0
|
作者
Michael Kaltenbäck
Nathanael Skrepek
机构
[1] Technische Universitat Wien,
[2] University of Wuppertal,undefined
来源
关键词
Krein space; Definitizable operators; Self-adjoint operators; Spectral theorem; 47A60; 47B50; 47B15;
D O I
暂无
中图分类号
学科分类号
摘要
In the present note a spectral theorem for a finite tuple of pairwise commuting, self-adjoint and definitizable bounded linear operators A1,…,An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_1,\ldots ,A_n$$\end{document} on a Krein space is derived by developing a functional calculus ϕ↦ϕ(A1,…,An)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \mapsto \phi (A_1,\ldots ,A_n)$$\end{document} which is the proper analogue of ϕ↦∫ϕdE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \mapsto \int \phi \, dE$$\end{document} in the Hilbert space situation with the common spectral measure E for a finite tuple of pairwise commuting, self-adjoint bounded linear operators.
引用
收藏
相关论文
共 50 条