In the present note a spectral theorem for a finite tuple of pairwise commuting, self-adjoint and definitizable bounded linear operators A1,…,An\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A_1,\ldots ,A_n$$\end{document} on a Krein space is derived by developing a functional calculus ϕ↦ϕ(A1,…,An)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi \mapsto \phi (A_1,\ldots ,A_n)$$\end{document} which is the proper analogue of ϕ↦∫ϕdE\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\phi \mapsto \int \phi \, dE$$\end{document} in the Hilbert space situation with the common spectral measure E for a finite tuple of pairwise commuting, self-adjoint bounded linear operators.