Central values of L-functions of cubic twists

被引:0
|
作者
Eugenia Rosu
机构
[1] Max Planck Institute for Mathematics,Department of Mathematics
[2] University of Arizona,undefined
来源
Mathematische Annalen | 2020年 / 378卷
关键词
Primary 11G40; 11F67; Secondary 14H52;
D O I
暂无
中图分类号
学科分类号
摘要
We are interested in finding for which positive integers D we have rational solutions for the equation x3+y3=D.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^3+y^3=D.$$\end{document} The aim of this paper is to compute the value of the L-function L(ED,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(E_D, 1)$$\end{document} for the elliptic curves ED:x3+y3=D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_D: x^3+y^3=D$$\end{document}. For the case of p prime p≡1mod9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\equiv 1\mod 9$$\end{document}, two formulas have been computed by Rodriguez-Villegas and Zagier. We have computed formulas that relate L(ED,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(E_D, 1)$$\end{document} to the square of a trace of a modular function at a CM point. This offers a criterion for when the integer D is the sum of two rational cubes. Furthermore, when L(ED,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(E_D, 1)$$\end{document} is nonzero we get a formula for the number of elements in the Tate–Shafarevich group and we show that this number is a square when D is a norm in Q[-3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}[\sqrt{-3}]$$\end{document}.
引用
收藏
页码:1327 / 1370
页数:43
相关论文
共 50 条