Generalized derivations with annihilator conditions in prime rings

被引:0
|
作者
Asma Ali
Shahoor Khan
机构
[1] Aligarh Muslim University,Department of Mathematics
关键词
Prime ring; Generalized derivation; Extended centroid; Symmetric Martindale quotient ring; 16N60; 16U80; 16W25;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a prime ring. Q its symmetric Martindale quotient ring. C its extended centroid, I a nonzero ideal of R and F a generalized derivation of R,m≥1,n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R, m \ge 1, n \ge 1$$\end{document} two fixed integers and 0≠a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \ne a \in R$$\end{document}. Assume that a((F(x∘y)m-(x∘y)n)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a((F(x \circ y)^m - (x\circ y)^n) = 0$$\end{document} for all x,y∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in I$$\end{document}. Then one of the following holds: R is commutative.n=m=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = m =1$$\end{document} and there exists b∈Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \in Q$$\end{document} such that F(x)=bx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(x) = bx$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in R$$\end{document} with ab=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab = a$$\end{document}.There exists b∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \in C$$\end{document} such that F(x)=bx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(x) = bx$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in R$$\end{document} with bm=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^m = 1$$\end{document} and (x∘y)m=(x∘y)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x\circ y)^m = (x \circ y)^n$$\end{document}, for all x,y∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in R$$\end{document}.R⊆M2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R \subseteq M_2(C)$$\end{document}, the ring of 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times 2$$\end{document} matrices over C,n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C, n=1$$\end{document} and m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 2$$\end{document} such that αm=α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^m =\alpha $$\end{document} for all α∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in C$$\end{document}; and there exists b∈Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \in Q$$\end{document} such that F(x)=bx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(x) = bx$$\end{document} for all x∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in R$$\end{document} with ab=a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab = a$$\end{document}.R⊆M2(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\subseteq M_2(C)$$\end{document} and char(R)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$char(R) = 2$$\end{document}.Assume that char(R)≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$char(R) \ne 2$$\end{document} and a((F(x∘y)m-(x∘y)n)∈Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a((F(x\circ y)^m - (x\circ y)^n) \in Z(R)$$\end{document} for all x,y∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in I$$\end{document}. If there exist x0,y0∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0, y_0 \in I$$\end{document} such that a((F(x0∘y0)m-(x0∘y0)n)≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a((F(x_0 \circ y_0)^m - (x_0 \circ y_0)^n ) \ne 0$$\end{document}, then either there exists a field E such that R⊆M2(E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R \subseteq M_2(E) $$\end{document} or a∈Z(R),(x∘y)m-(x∘y)n∈Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in Z(R), (x\circ y)^m - (x\circ y)^n \in Z(R)$$\end{document} for any x,y∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in R$$\end{document} and there exist b∈Z(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \in Z(R)$$\end{document} such that bm=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^m = 1$$\end{document}.
引用
收藏
页码:783 / 792
页数:9
相关论文
共 50 条
  • [1] GENERALIZED DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS
    Dhara, Basudeb
    De Filippis, Vincenzo
    Pradhan, Krishna Gopal
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (03): : 943 - 952
  • [2] GENERALIZED DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS
    Wang, Yu
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (05) : 917 - 922
  • [3] Generalized derivations with annihilator conditions in prime rings
    Ali, Asma
    Khan, Shahoor
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 783 - 792
  • [4] POWER VALUES OF GENERALIZED DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS
    Ali, Asma
    De Filippis, Vincenzo
    Khan, Shahoor
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 2887 - 2897
  • [5] Power Values of Generalized Derivations with Annihilator Conditions in Prime Rings
    Dhara, Basudeb
    De Filippis, Vincenzo
    Scudo, Giovanni
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (01) : 123 - 135
  • [6] Power Values of Generalized Derivations with Annihilator Conditions in Prime Rings
    Basudeb Dhara
    Vincenzo De Filippis
    Giovanni Scudo
    [J]. Mediterranean Journal of Mathematics, 2013, 10 : 123 - 135
  • [7] Generalized derivations of prime rings on multilinear polynomials with annihilator conditions
    Argac, Nurcan
    Demir, Cagri
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (02) : 231 - 243
  • [8] DERIVATIONS WITH ANNIHILATOR CONDITIONS IN PRIME RINGS
    Dhara, Basudeb
    Kar, Sukhendu
    Mondal, Sachhidananda
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (05) : 1651 - 1657
  • [9] Derivations with annihilator conditions in prime rings
    Dhara, Basudeb
    Sharma, R. K.
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 71 (1-2): : 11 - 20
  • [10] ANNIHILATOR CONDITIONS WITH GENERALIZED SKEW DERIVATIONS AND LIE IDEALS OF PRIME RINGS
    De Filippis, Vincenzo
    Rehman, Nadeem Ur
    Scudo, Giovanni
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2022, 32 : 192 - 216