Theoretical investigation on TbTe for its structural, electronic, magnetic, and thermodynamic stuffs has been carried within density functional theory (DFT) as implemented in WIEN2K code. TbTe was found stable in ferromagnetic phase. The calculated ground-state parameters were found in a good agreement with the experimental data. The compound was found to have a structural stability in cubic B1 (NaCl-type structure) phase, but under the application of high pressure (at 27 GPa), it undergone to B2 (CsCl-type structure) phase of pressure. The second-order elastic constants and mechanical properties like Young’s modulus, Shear modulus, Poisson ratio, Cauchy pressure (C12–C44), and Pugh’s ratio (B/G) were calculated. The present calculations confirmed the ductile nature of TbTe. Further, the thermodynamic investigations have been carried using quasi-harmonic Debye approximation. We have calculated the pressure and temperature dependence of Debye temperature (𝜃D), bulk modulus (B), thermal expansion (α), heat capacities (CV), and entropy (S) in the temperature range of 0 to 1000 K and pressure range of 0 to 25 GPa.