Three-dimensional anisotropic harmonic oscillator in a magnetic field

被引:0
|
作者
T. K. Rebane
机构
[1] St. Petersburg State University,Faculty of Physics
来源
Optics and Spectroscopy | 2012年 / 112卷
关键词
Magnetic Field; Harmonic Oscillator; Energy Operator; Free Oscillator; Uniform Magnetic Field;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of the energy levels of a three-dimensional anisotropic harmonic oscillator in a uniform magnetic field with an arbitrary strength and orientation is exactly solved. It is shown that, in the magnetic field, the levels continue to be equidistant: the energy spectrum is a superposition of three groups of levels separated by the same spacing dependent on the field strength. The results obtained can be used in modeling the magneto-optical properties of diverse quantum-mechanical systems.
引用
收藏
页码:813 / 816
页数:3
相关论文
共 50 条
  • [1] Three-dimensional anisotropic harmonic oscillator in a magnetic field
    Rebane, T. K.
    [J]. OPTICS AND SPECTROSCOPY, 2012, 112 (06) : 813 - 816
  • [2] Spin noncommutativity and the three-dimensional harmonic oscillator
    Falomir, H.
    Gamboa, J.
    Loewe, M.
    Mendez, F.
    Rojas, J. C.
    [J]. PHYSICAL REVIEW D, 2012, 85 (02):
  • [3] On the two-dimensional time-dependent anisotropic harmonic oscillator in a magnetic field
    Patra, Pinaki
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (04)
  • [4] Energy levels of an anisotropic three-dimensional polaron in a magnetic field
    Brancus, DEN
    Stan, G
    [J]. PHYSICAL REVIEW B, 2001, 63 (23):
  • [5] Quantized energy spectrum and exact wave function of three-dimensional anisotropic coupled harmonic oscillator
    Ling Rui-Liang
    Feng Jin
    Feng Jin-Fu
    [J]. ACTA PHYSICA SINICA, 2010, 59 (12) : 8348 - 8358
  • [6] Three-dimensional harmonic oscillator as a quantum Otto engine
    Rodin, A.
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [7] ATOMIC COHERENT STATES AS THE EIGENSTATES OF A TWO-DIMENSIONAL ANISOTROPIC HARMONIC OSCILLATOR IN A UNIFORM MAGNETIC FIELD
    Meng, Xiang-Guo
    Wang, Ji-Suo
    Fan, Hong-Yi
    [J]. MODERN PHYSICS LETTERS A, 2009, 24 (38) : 3129 - 3136
  • [8] Angular momentum decomposition of the three-dimensional Wigner harmonic oscillator
    Regniers, G.
    Van der Jeugt, J.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (11)
  • [9] The three-dimensional harmonic oscillator and solid harmonics in Bargmann space
    Sunko, D. K.
    Cioslowski, J.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2024, 45 (05)
  • [10] Radial basic operators of three-dimensional isotropic harmonic oscillator
    Zha, Xin-Wei
    [J]. Wuli Xuebao/Acta Physica Sinica, 2002, 51 (04): : 725 - 726