Maximum Likelihood Estimation of Parameters of a Random Variable Using Monte Carlo Methods

被引:0
|
作者
Oualid Saci
Megdouda Ourbih-Tari
Leila Baiche
机构
[1] University of Bejaia,Laboratory of Applied Mathematics, Faculty of Exact Sciences
[2] Centre Universitaire de Tipaza,Institut des Sciences
[3] Faculty of Exact Sciences University of Bejaia,Laboratory of Applied Mathematics
来源
Sankhya A | 2023年 / 85卷
关键词
Refined Descriptive Sampling; Monte Carlo method; Order statistics; Cumulative distribution function; Maximum likelihood; Primary: 65C05; Secondary: 62F07; 62G30; 11K45;
D O I
暂无
中图分类号
学科分类号
摘要
In a parametric estimation framework, this paper proposes different properties for the maximum likelihood estimators of unknown parameters of a given random variable having a known distribution, where different parameter estimation cases are studied. The Refined Descriptive Sampling (RDS) method is chosen to generate samples used for the estimation purpose. Then, we compare the RDS maximum likelihood estimators to their competitors provided by simple random samples with the same size and issued from the same distribution, through their Fisher information. Furthermore, the Maximum likelihood RDS mean is written as a function of its corresponding empirical estimator where the expression can be used to determine the estimator value when a refined descriptive sample is provided. All these results allow us to conclude that the proposed Maximum Likelihood Estimation (MLE) using refined descriptive samples is more efficient than that already obtained from simple random samples, which means that MLE using RDS has advantage in estimating parameters when the samples are not independent and identically distributed. Some Monte Carlo simulations are provided to validate the obtained theoretical results.
引用
收藏
页码:540 / 571
页数:31
相关论文
共 50 条
  • [1] Maximum Likelihood Estimation of Parameters of a Random Variable Using Monte Carlo Methods
    Saci, Oualid
    Ourbih-Tari, Megdouda
    Baiche, Leila
    [J]. SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 540 - 571
  • [2] Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood
    Descombes, X
    Morris, RD
    Zerubia, J
    Berthod, M
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (07) : 954 - 963
  • [3] Maximum likelihood estimation of Markov random field parameters using Markov chain Monte Carlo algorithms
    Descombes, X
    Morris, R
    Zerubia, J
    Berthod, M
    [J]. ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, 1223 : 133 - 148
  • [4] Maximum likelihood parameter estimation for latent variable models using sequential Monte Carlo
    Johansen, Adam
    Doucet, Arnaud
    Davy, Manuel
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 3091 - 3094
  • [5] ESTIMATION OF RANDOM VARIABLE DISTRIBUTION PARAMETERS BY THE MONTE CARLO METHOD
    Sienkowski, Sergiusz
    [J]. METROLOGY AND MEASUREMENT SYSTEMS, 2013, 20 (02) : 249 - 262
  • [6] Efficient Monte Carlo algorithm for restricted maximum likelihood estimation of genetic parameters
    Matilainen, Kaarina
    Mantysaari, Esa A.
    Stranden, Ismo
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2019, 136 (04) : 252 - 261
  • [7] Employing a Monte Carlo Algorithm in Newton-Type Methods for Restricted Maximum Likelihood Estimation of Genetic Parameters
    Matilainen, Kaarina
    Mantysaari, Esa A.
    Lidauer, Martin H.
    Stranden, Ismo
    Thompson, Robin
    [J]. PLOS ONE, 2013, 8 (12):
  • [8] Maximum logq likelihood estimation for parameters of Weibull distribution and properties: Monte Carlo simulation
    Cankaya, Mehmet Niyazi
    Vila, Roberto
    [J]. SOFT COMPUTING, 2023, 27 (11) : 6903 - 6926
  • [10] The use of approximating models in Monte Carlo maximum likelihood estimation
    Kuk, AYC
    [J]. STATISTICS & PROBABILITY LETTERS, 1999, 45 (04) : 325 - 333