Automatic Microstructural Characterization and Classification Using Higher-Order Spectra on Ultrasound Signals

被引:0
|
作者
Masoud Vejdannik
Ali Sadr
机构
[1] Iran University of Science & Technology (IUST),School of Electrical Engineering
来源
关键词
Bispectrum; Classification and regression tree; k-Nearest neighbor; Linear discriminant analysis; Microstructural characterization; Non-destructive inspection; Random forest; Ultrasound signals;
D O I
暂无
中图分类号
学科分类号
摘要
During the gas tungsten arc welding of nickel based superalloys, the secondary phases such as Laves and carbides are formed in final stage of solidification. But, other phases such as γ′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma {''}$$\end{document} and δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} phases can precipitate in the microstructure, during aging at high temperatures. Nevertheless, choosing the appropriate conditions of welding can minimize the formation of the Nb-rich Laves phases and thus reduce the susceptibility to solidification cracking. This study aims at the automatic microstructurally characterizing the kinetics of phase transformations on an Nb-base alloy, thermally aged at 650 and 950 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C for 10, 100 and 200 h, through backscattered ultrasound signals at frequency of 4 MHz. For this, an automated processing system was designed using the spectrum representation of higher order statistics. The ultrasound signals are inherently non-linear and thus the conventional linear time and frequency domain methods can not reveal the complexity of these signals clearly. Bispectrum (the spectral representation of third order correlation) is a non-linear method which is highly robust to noise. In the proposed system, the bispectrum coefficients are subjected to linear discriminant analysis (LDA) technique to reduce the statistical redundancy and reveal discriminating features. These dimensionality reduced features are fed to the classification and regression tree, random forest and k-nearest neighbor (k-NN) classifiers to automatic microstructural characterization. Bispectrum coupled with LDA and k-NN yielded the highest average accuracy of 95.0 and 78.0 %, respectively for thermal aging at 650 and 950 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C. Thus, the proposed processing system provides high reliability to be used for microstructure characterization through ultrasound signals.
引用
收藏
相关论文
共 50 条
  • [1] Automatic Microstructural Characterization and Classification Using Higher-Order Spectra on Ultrasound Signals
    Vejdannik, Masoud
    Sadr, Ali
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2016, 35 (01) : 1 - 14
  • [2] Automatic identification of epileptic electroencephalography signals using higher-order spectra
    Chua, K. C.
    Chandran, V.
    Acharya, U. R.
    Lim, C. M.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2009, 223 (H4) : 485 - 495
  • [3] Automatic microstructural characterization and classification using probabilistic neural network on ultrasound signals
    Vejdannik, Masoud
    Sadr, Ali
    JOURNAL OF INTELLIGENT MANUFACTURING, 2018, 29 (08) : 1923 - 1940
  • [4] Automatic microstructural characterization and classification using artificial intelligence techniques on ultrasound signals
    Nunes, Thiago M.
    de Albuquerque, Victor Hugo C.
    Papa, Joao P.
    Silva, Cleiton C.
    Normando, Paulo G.
    Moura, Elineudo P.
    Tavares, Joao Manuel R. S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (08) : 3096 - 3105
  • [5] Automatic microstructural characterization and classification using probabilistic neural network on ultrasound signals
    Masoud Vejdannik
    Ali Sadr
    Journal of Intelligent Manufacturing, 2018, 29 : 1923 - 1940
  • [6] A NEW TECHNIQUE FOR CLASSIFICATION OF FOCAL AND NONFOCAL EEG SIGNALS USING HIGHER-ORDER SPECTRA
    Sharma, Rahul
    Sircar, Pradip
    Pachori, Ram Bilas
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2019, 19 (01)
  • [7] Application of higher-order spectra for the characterization of Coronary artery disease using electrocardiogram signals
    Acharya, U. Rajendra
    Sudarshan, Vidya K.
    Koh, Joel E. W.
    Martis, Roshan Joy
    Tan, Jen Hong
    Oh, Shu Lih
    Muhammad, Adam
    Hagiwara, Yuki
    Mookiah, Muthu Rama Krishanan
    Chua, Kok Poo
    Chua, Chua K.
    Tan, Ru San
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 31 : 31 - 43
  • [8] Application of Linear Discriminant Analysis to Ultrasound Signals for Automatic Microstructural Characterization and Classification
    Masoud Vejdannik
    Ali Sadr
    Journal of Signal Processing Systems, 2016, 83 : 411 - 421
  • [9] Application of Linear Discriminant Analysis to Ultrasound Signals for Automatic Microstructural Characterization and Classification
    Vejdannik, Masoud
    Sadr, Ali
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2016, 83 (03): : 411 - 421
  • [10] Characterization of tornado spectral signatures using higher-order spectra
    Yu, Tian-You
    Wang, Yadong
    Shapiro, Alan
    Yeary, Mark B.
    Zrnic, Dusan S.
    Doviak, Richard J.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2007, 24 (12) : 1997 - 2013