A semigroup characterization of well-posed linear control systems

被引:0
|
作者
Miriam Bombieri
Klaus-Jochen Engel
机构
[1] Mathematisches Institut,Arbeitsbereich Funktionalanalysis
[2] Università degli Studi dell’Aquila,Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
来源
Semigroup Forum | 2014年 / 88卷
关键词
Well-posed linear systems; Admissible control operator; Admissible output operator; Laplace transform; Fourier multiplier; Lax–Phillips semigroup;
D O I
暂无
中图分类号
学科分类号
摘要
We study the well-posedness of a linear control system Σ(A,B,C,D) with unbounded control and observation operators. To this end we associate to our system an operator matrix \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} on a product space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{X}^{p}$\end{document} and call it p-well-posed if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A}$\end{document} generates a strongly continuous semigroup on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{X}^{p}$\end{document}. Our approach is based on the Laplace transform and Fourier multipliers. The results generalize and complement those of Curtain and Weiss (Int. Ser. Numer. Math. vol. 91. Birkhäuser, Basel, 1989), Staffans and Weiss (Trans. Am. Math. Soc. 354:3229–3262, 2002) and are illustrated by a heat equation with boundary control and point observation.
引用
收藏
页码:366 / 396
页数:30
相关论文
共 50 条