首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Lie Sphere Geometry in Hubert Spaces
被引:0
|
作者
:
Benz W.
论文数:
0
引用数:
0
h-index:
0
机构:
Mathematisches Seminar der Universität, Bundesstr. 55, Hamburg
Mathematisches Seminar der Universität, Bundesstr. 55, Hamburg
Benz W.
[
1
]
机构
:
[1]
Mathematisches Seminar der Universität, Bundesstr. 55, Hamburg
来源
:
Results in Mathematics
|
2001年
/ 40卷
/ 1-4期
关键词
:
Laguerre transformations;
Lie cycles;
Lie transformations;
Lorentz boosts;
D O I
:
10.1007/BF03322699
中图分类号
:
学科分类号
:
摘要
:
We develop Lie sphere geometry for arbitrary real pre-Hilbert spaces of (finite or infinite) dimension at least 2. One of the main results is that a bijection of the set of all Laguerre cycles which preserves contact in one direction must already be a Lie transformation (THEOREM 2). As a first consequence of this theorem we get that a bijection of an arbitrary real pre-Hilbert space of dimension at least 3 which preserves Lorentz-Minkowski distance 0 in one direction must already be a (proper or improper) Lorentz boost up to a dilatation, a translation and an orthogonal mapping (THEOREM 3). This is a generalization of results of A.D. Alexandroff [1], E.M. Schröder [21] and F. Cacciafesta [7]. Another consequence is that a bijection of the set of all Lie cycles which preserves contact in one direction must already be a Lie transformation (THEOREM 4). If we apply this result to the finite dimensional case, we get that the diffeomorphism assumption in the Fundamental Theorem of Lie sphere geometry as stated in Theorem 1.5 in T.E. Cecil [8], p. 33, is not needed for the proof of this theorem (REMARK to THEOREM 4). © 2001, Birkhäuser Verlag, Basel.
引用
收藏
页码:9 / 36
页数:27
相关论文
共 50 条
[1]
The fundamentals of Lie's sphere geometry in Euclidean spaces
Beck, H
论文数:
0
引用数:
0
h-index:
0
Beck, H
MATHEMATISCHE ZEITSCHRIFT,
1922,
15
: 159
-
167
[2]
TAUTNESS AND LIE SPHERE GEOMETRY
CECIL, TE
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
CECIL, TE
CHERN, SS
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
CHERN, SS
MATHEMATISCHE ANNALEN,
1987,
278
(1-4)
: 381
-
399
[3]
Lie sphere geometry in lattice cosmology
Fennen, Michael
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Bremen, Ctr Appl Space Technol & Micrograv, Bremen, Germany
Univ Bremen, Ctr Appl Space Technol & Micrograv, Bremen, Germany
Fennen, Michael
Giulini, Domenico
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Bremen, Ctr Appl Space Technol & Micrograv, Bremen, Germany
Leibniz Univ Hannover, Inst Theoret Phys, Hannover, Germany
Univ Bremen, Ctr Appl Space Technol & Micrograv, Bremen, Germany
Giulini, Domenico
CLASSICAL AND QUANTUM GRAVITY,
2020,
37
(06)
[4]
Lie sphere geometry and integrable systems
Ferapontov, EV
论文数:
0
引用数:
0
h-index:
0
机构:
Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
Ferapontov, EV
TOHOKU MATHEMATICAL JOURNAL,
2000,
52
(02)
: 199
-
233
[5]
Channel surfaces in Lie sphere geometry
Pember M.
论文数:
0
引用数:
0
h-index:
0
机构:
Vienna University of Technology, Wiedner Hauptstraße 8-10/104, Vienna
Vienna University of Technology, Wiedner Hauptstraße 8-10/104, Vienna
Pember M.
论文数:
引用数:
h-index:
机构:
Szewieczek G.
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry,
2018,
59
(4):
: 779
-
796
[6]
The Ribaucour transformation in Lie sphere geometry
Burstall, F. E.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
Burstall, F. E.
Hertrich-Jeromin, U.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
Hertrich-Jeromin, U.
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS,
2006,
24
(05)
: 503
-
520
[7]
DUPIN SUBMANIFOLDS IN LIE SPHERE GEOMETRY
CECIL, TE
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
CECIL, TE
CHERN, SS
论文数:
0
引用数:
0
h-index:
0
机构:
UNIV CALIF BERKELEY,DEPT MATH,BERKELEY,CA 94720
CHERN, SS
LECTURE NOTES IN MATHEMATICS,
1989,
1369
: 1
-
48
[8]
Homogeneous surfaces in Lie sphere geometry
Tongzhu Li
论文数:
0
引用数:
0
h-index:
0
机构:
Capital Normal University,Department of Mathematics
Tongzhu Li
Geometriae Dedicata,
2010,
149
: 15
-
43
[9]
Homogeneous surfaces in Lie sphere geometry
Li, Tongzhu
论文数:
0
引用数:
0
h-index:
0
机构:
Capital Normal Univ, Dept Math, Beijing 100871, Peoples R China
Beijing Inst Technol, Dept Math, Beijing 100871, Peoples R China
Capital Normal Univ, Dept Math, Beijing 100871, Peoples R China
Li, Tongzhu
GEOMETRIAE DEDICATA,
2010,
149
(01)
: 15
-
43
[10]
Classification of surfaces in three-sphere in lie sphere geometry
Yamazaki, T
论文数:
0
引用数:
0
h-index:
0
机构:
NAGOYA UNIV,GRAD SCH POLYMATH,CHIKUSA KU,NAGOYA,AICHI 46401,JAPAN
NAGOYA UNIV,GRAD SCH POLYMATH,CHIKUSA KU,NAGOYA,AICHI 46401,JAPAN
Yamazaki, T
Yoshikawa, AY
论文数:
0
引用数:
0
h-index:
0
机构:
NAGOYA UNIV,GRAD SCH POLYMATH,CHIKUSA KU,NAGOYA,AICHI 46401,JAPAN
NAGOYA UNIV,GRAD SCH POLYMATH,CHIKUSA KU,NAGOYA,AICHI 46401,JAPAN
Yoshikawa, AY
NAGOYA MATHEMATICAL JOURNAL,
1996,
143
: 59
-
92
←
1
2
3
4
5
→