A projector-splitting integrator for dynamical low-rank approximation

被引:0
|
作者
Christian Lubich
Ivan V. Oseledets
机构
[1] Universität Tübingen,Mathematisches Institut
[2] Skolkovo Institute of Science and Technology,Institute of Numerical Mathematics
[3] Russian Academy of Sciences,undefined
来源
BIT Numerical Mathematics | 2014年 / 54卷
关键词
Low-rank approximation; Time-dependent matrices; Matrix differential equations; Numerical integrator; 65F30; 65L05; 65L20; 15A23;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamical low-rank approximation of time-dependent matrices is a low-rank factorization updating technique. It leads to differential equations for factors of the matrices, which need to be solved numerically. We propose and analyze a fully explicit, computationally inexpensive integrator that is based on splitting the orthogonal projector onto the tangent space of the low-rank manifold. As is shown by theory and illustrated by numerical experiments, the integrator enjoys robustness properties that are not shared by any standard numerical integrator. This robustness can be exploited to change the rank adaptively. Another application is in optimization algorithms for low-rank matrices where truncation back to the given low rank can be done efficiently by applying a step of the integrator proposed here.
引用
收藏
页码:171 / 188
页数:17
相关论文
共 50 条
  • [1] A projector-splitting integrator for dynamical low-rank approximation
    Lubich, Christian
    Oseledets, Ivan V.
    BIT NUMERICAL MATHEMATICS, 2014, 54 (01) : 171 - 188
  • [2] A LOW-RANK PROJECTOR-SPLITTING INTEGRATOR FOR THE VLASOV-POISSON EQUATION
    Einkemmer, Lukas
    Lubich, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : B1330 - B1360
  • [3] A low-rank projector-splitting integrator for the Vlasov-Maxwell equations with divergence correction
    Einkemmer, Lukas
    Ostermann, Alexander
    Piazzola, Chiara
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 403
  • [4] Stability properties of a projector-splitting scheme for dynamical low rank approximation of random parabolic equations
    Kazashi, Yoshihito
    Nobile, Fabio
    Vidlickova, Eva
    NUMERISCHE MATHEMATIK, 2021, 149 (04) : 973 - 1024
  • [5] Stability properties of a projector-splitting scheme for dynamical low rank approximation of random parabolic equations
    Yoshihito Kazashi
    Fabio Nobile
    Eva Vidličková
    Numerische Mathematik, 2021, 149 : 973 - 1024
  • [6] An unconventional robust integrator for dynamical low-rank approximation
    Gianluca Ceruti
    Christian Lubich
    BIT Numerical Mathematics, 2022, 62 : 23 - 44
  • [7] An unconventional robust integrator for dynamical low-rank approximation
    Ceruti, Gianluca
    Lubich, Christian
    BIT NUMERICAL MATHEMATICS, 2022, 62 (01) : 23 - 44
  • [8] A rank-adaptive robust integrator for dynamical low-rank approximation
    Gianluca Ceruti
    Jonas Kusch
    Christian Lubich
    BIT Numerical Mathematics, 2022, 62 : 1149 - 1174
  • [9] A rank-adaptive robust integrator for dynamical low-rank approximation
    Ceruti, Gianluca
    Kusch, Jonas
    Lubich, Christian
    BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1149 - 1174
  • [10] A PARALLEL RANK-ADAPTIVE INTEGRATOR FOR DYNAMICAL LOW-RANK APPROXIMATION
    Cerutit, Gianluca
    Kusch, Jonas
    Lubich, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (03): : B205 - B228