Blind Separation of Instantaneous Mixtures of Independent/Dependent Sources

被引:1
|
作者
Amal Ourdou
Abdelghani Ghazdali
Amine Laghrib
Abdelmoutalib Metrane
机构
[1] Sultan Moulay Slimane University,LIPIM, ENSA Khouribga
[2] Sultan Moulay Slimane University,LMA, FST Béni
关键词
Blind Source Separation; Dependent sources; Copulas; -Divergence;
D O I
暂无
中图分类号
学科分类号
摘要
Blind Source Separation (BSS) has always been an active research field within the signal processing community; it is used to reconstruct primary source signals from their observed mixtures. Independent Component Analysis has been and is still used to solve the BSS problem; however, it is based on the mutual independence of the original source signals. In this paper, we propose to use Copulas to model the dependency structure between these signals, enabling the separation of dependent source components; we also deploy α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-divergence as our cost function to minimize, considering its superiority to handle noisy data as well as its ability to converge faster. We test our approach for various values of alpha and give a comparative study between the proposed methodology and other existing methods; this approach exhibited a higher quality performance and accuracy, especially when the value of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is equal to 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document}, which is equivalent to the Hellinger divergence.
引用
收藏
页码:4428 / 4451
页数:23
相关论文
共 50 条
  • [1] Blind Separation of Instantaneous Mixtures of Independent/Dependent Sources
    Ourdou, Amal
    Ghazdali, Abdelghani
    Laghrib, Amine
    Metrane, Abdelmoutalib
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (09) : 4428 - 4451
  • [2] Blind separation of instantaneous mixtures of dependent sources
    Castella, Marc
    Comon, Pierre
    [J]. INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 9 - +
  • [3] Adaptive Blind Separation of Instantaneous Linear Mixtures of Independent Sources
    Sembera, Ondrej
    Tichavsky, Petr
    Koldovsky, Zbynek
    [J]. LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2017), 2017, 10169 : 172 - 181
  • [4] Blind separation of instantaneous mixtures of nonstationary sources
    Pham, DT
    Cardoso, JF
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (09) : 1837 - 1848
  • [5] Blind partial separation of instantaneous mixtures of sources
    Pham, DTA
    [J]. INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 868 - 875
  • [6] Blind separation of instantaneous mixtures of impulsive α-stable sources
    Sahmoudi, M
    Abed-Meraim, K
    Benidir, M
    [J]. ISPA 2003: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, PTS 1 AND 2, 2003, : 353 - 358
  • [7] Robust approach for blind separation of noisy mixtures of independent and dependent sources
    Ghazdali, A.
    Ourdou, A.
    Hakim, M.
    Laghrib, A.
    Mamouni, N.
    Metrane, A.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 60 : 426 - 445
  • [8] Underdetermined blind separation of sparse sources with instantaneous and convolutive mixtures
    Luengo, D
    Santamaria, I
    Vielva, L
    Pantaleón, C
    [J]. 2003 IEEE XIII WORKSHOP ON NEURAL NETWORKS FOR SIGNAL PROCESSING - NNSP'03, 2003, : 279 - 288
  • [9] Blind signal deconvolution as an instantaneous blind separation of statistically dependent sources
    Kopriva, Ivica
    [J]. INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 504 - 511
  • [10] Blind separation of independent sources from convolutive mixtures
    Comon, P
    Rota, L
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (03) : 542 - 549