A new numerical method for obtaining gluon distribution functions G(x,Q2)=xg(x,Q2), from the proton structure function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{2}^{\gamma p}(x,Q^{2})$\end{document}

被引:0
|
作者
Martin M. Block
机构
[1] Northwestern University,Department of Physics and Astronomy
来源
The European Physical Journal C | 2010年 / 65卷 / 1-2期
关键词
Gluon Distribution; Split Function; Numerical Inversion; Quark Distribution; Massless Quark;
D O I
10.1140/epjc/s10052-009-1195-8
中图分类号
学科分类号
摘要
An exact expression for the leading-order (LO) gluon distribution function G(x,Q2)=xg(x,Q2) from the DGLAP evolution equation for the proton structure function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{2}^{\gamma p}(x,Q^{2})$\end{document} for deep inelastic γ*p scattering has recently been obtained (Block et al., Phys. Rev. D 79:014031, 2009) for massless quarks, using Laplace transformation techniques. Here, we develop a fast and accurate numerical inverse Laplace transformation algorithm, required to invert the Laplace transforms needed to evaluate G(x,Q2), and compare it to the exact solution. We obtain accuracies of less than 1 part in 1000 over the entire x and Q2 spectrum. Since no analytic Laplace inversion is possible for next-to-leading order (NLO) and higher orders, this numerical algorithm will enable one to obtain accurate NLO (and NNLO) gluon distributions, using only experimental measurements of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F_{2}^{\gamma p}(x,Q^{2})$\end{document} .
引用
收藏
页码:1 / 7
页数:6
相关论文
共 50 条