A generating function for nonstandard orthogonal polynomials involving differences: the Meixner case

被引:0
|
作者
Juan J. Moreno-Balcázar
Teresa E. Pérez
Miguel A. Piñar
机构
[1] Universidad de Almería,Departamento de Estadística y Matemática Aplicada, Instituto Carlos I de Física Teórica y Computacional
[2] Universidad de Granada,Departamento de Matemática Aplicada, Instituto Carlos I de Física Teórica y Computacional
来源
The Ramanujan Journal | 2011年 / 25卷
关键词
Meixner polynomials; Nonstandard orthogonality; Generating function; 33C47; 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we deal with a family of nonstandard polynomials orthogonal with respect to an inner product involving differences. This type of inner product is the so-called Δ-Sobolev inner product. Concretely, we consider the case in which both measures appearing in the inner product correspond to the Pascal distribution (the orthogonal polynomials associated to this distribution are known as Meixner polynomials). The aim of this work is to obtain a generating function for the Δ-Meixner–Sobolev orthogonal polynomials and, by using a limit process, recover a generating function for Laguerre–Sobolev orthogonal polynomials.
引用
收藏
页码:21 / 35
页数:14
相关论文
共 50 条
  • [1] A generating function for nonstandard orthogonal polynomials involving differences: the Meixner case
    Moreno-Balcazar, Juan J.
    Perez, Teresa E.
    Pinar, Miguel A.
    [J]. RAMANUJAN JOURNAL, 2011, 25 (01): : 21 - 35
  • [2] On Polynomials Orthogonal with Respect to an Inner Product Involving Higher-Order Differences: The Meixner Case
    Costas-Santos, Roberto S.
    Soria-Lorente, Anier
    Vilaire, Jean-Marie
    [J]. MATHEMATICS, 2022, 10 (11)
  • [3] Inner products involving differences:: The Meixner-Sobolev polynomials
    Area, I
    Godoy, E
    Marcellán, F
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2000, 6 (01) : 1 - 31
  • [4] Sobolev Orthogonal Polynomials Generated by Meixner Polynomials
    Sharapudinov, I. I.
    Gadzhieva, Z. D.
    [J]. IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (03): : 310 - 321
  • [5] Exceptional Meixner and Laguerre orthogonal polynomials
    Duran, Antonio J.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2014, 184 : 176 - 208
  • [6] On multiple orthogonal polynomials for discrete Meixner measures
    Sorokin, V. N.
    [J]. SBORNIK MATHEMATICS, 2010, 201 (10) : 1539 - 1561
  • [7] On zeros of quasi-orthogonal Meixner polynomials
    Jooste, Alta
    Jordaan, Kerstin
    [J]. DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2023, 16 (03): : 48 - 56
  • [8] DISCRETE SEMICLASSICAL ORTHOGONAL POLYNOMIALS - GENERALIZED MEIXNER
    RONVEAUX, A
    [J]. JOURNAL OF APPROXIMATION THEORY, 1986, 46 (04) : 403 - 407
  • [9] On Multiple Orthogonal Polynomials for Three Meixner Measures
    Sorokin, V. N.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 298 (01) : 294 - 316
  • [10] On multiple orthogonal polynomials for three Meixner measures
    V. N. Sorokin
    [J]. Proceedings of the Steklov Institute of Mathematics, 2017, 298 : 294 - 316