On the relation between entropy and the average complexity of trajectories in dynamical systems

被引:0
|
作者
F. Blume
机构
[1] Department of Mathematics,
[2] John Brown University,undefined
[3] Siloam Springs,undefined
[4] AR 72761,undefined
[5] USA,undefined
[6] e-mail: fblume@acc.jbu.edu ,undefined
来源
关键词
Keywords. Entropy, measure-preserving transformations, algorithmic complexity, convergence rates.;
D O I
暂无
中图分类号
学科分类号
摘要
If (X,T) is a measure-preserving system, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \alpha $\end{document} a nontrivial partition of X into two sets and f a positive increasing function defined on the positive real numbers, then the limit inferior of the sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \{2H(\alpha_{0}^{n-1})/f(n)\}_{n=1}^{\infty} $\end{document} is greater than or equal to the limit inferior of the sequence of quotients of the average complexity of trajectories of length n generated by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \alpha_{0}^{n-1} $\end{document} and nf(log2(n))/log2(n). A similar statement also holds for the limit superior.
引用
收藏
页码:146 / 155
页数:9
相关论文
共 50 条
  • [1] On the relation between entropy and the average complexity of trajectories in dynamical systems
    Blume, F
    COMPUTATIONAL COMPLEXITY, 2000, 9 (02) : 146 - 155
  • [2] Entropy of Entropy: Measurement of Dynamical Complexity for Biological Systems
    Hsu, Chang Francis
    Wei, Sung-Yang
    Huang, Han-Ping
    Hsu, Long
    Chi, Sien
    Peng, Chung-Kang
    ENTROPY, 2017, 19 (10)
  • [3] Complexity, fractal dimensions and topological entropy in dynamical systems
    Affraimovich, V
    Glebsky, L
    Chaotic Dynamics and Transport in Classical and Quantum Systems, 2005, 182 : 35 - +
  • [4] Trajectories Entropy in Dynamical Graphs with Memory
    Caravelli, Francesco
    FRONTIERS IN ROBOTICS AND AI, 2016, 3
  • [5] Dynamical intricacy and average sample complexity
    Petersen, Karl
    Wilson, Benjamin
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2018, 33 (03): : 369 - 418
  • [6] RELATION BETWEEN DIVERGENCE OF TRAJECTORIES AND KOLMOGOROV-SINAI ENTROPY
    CASATI, G
    DIANA, E
    SCOTTI, A
    PHYSICS LETTERS A, 1976, 56 (01) : 5 - 6
  • [7] Entropy in dynamical systems
    Young, LS
    ENTROPY-BOOK, 2003, : 313 - 327
  • [8] Entropy in dynamical systems
    Young, LS
    ENTROPY-BK, 2003, : 313 - 327
  • [9] Entropy formula for random dynamical systems: relations between entropy, exponents and dimension
    Qian, M
    Qian, MP
    Xie, JS
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 1907 - 1931
  • [10] On scattering trajectories of dynamical systems
    Diaz-Cano, A.
    Gonzalez-Gascon, F.
    Peralta-Salas, D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (06)