Extensions in the class of countable torsion-free Abelian groups

被引:0
|
作者
Stefan Friedenberg
Lutz Strüngmann
机构
[1] University of Duisburg-Essen,Institute of Mathematics
来源
Acta Mathematica Hungarica | 2013年 / 140卷
关键词
Abelian group; extension; Whitehead group; torsion-free rank; -rank; 20K15; 20K20; 20K35;
D O I
暂无
中图分类号
学科分类号
摘要
It is a classical result that for a torsion-free Abelian group A the group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname {Ext}_{\mathbb {Z}}(A,B)$\end{document} is divisible for any Abelian group B. Hence it is of the form [inline-graphic not available: see fulltext] for some uniquely determined cardinals r0 and rp. In this paper we clarify when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname {Ext}_{\mathbb {Z}}(A,B)=0$\end{document} and examine the possible values for r0 and rp in case the groups A and B are countable (torsion-free). We also give some methods for constructing torsion-free groups A and B with prescribed cardinals r0 and rp. This is to say that for suitable sequences (r0,rp∣p∈ℙ) of cardinals we construct torsion-free countable Abelian groups A and B realizing r0 and rp as their invariants of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname {Ext}_{\mathbb {Z}}(A,B)$\end{document}.
引用
收藏
页码:316 / 328
页数:12
相关论文
共 50 条