Fourier-Feynman transforms and the first variation

被引:0
|
作者
Park C. [1 ]
Skoug D. [2 ]
Storvick D. [3 ]
机构
[1] Department of Mathematics and Statistics, Miami University, 45056 Oxford, OH
[2] Department of Mathematics and Statistics, University of Nebraska-Lincoln, 68588 Lincoln, NE
[3] School of Mathematics, University of Minnesota, 55455 Minneapolis, MN
关键词
Recurrence Relation; Banach Algebra; Dirichlet Form; Linear Factor; Gaussian Random Field;
D O I
10.1007/BF02844368
中图分类号
学科分类号
摘要
In this paper we complete the following four objectives: 1. We obtain an integration by parts formula for analytic Feynman integrals. 2. We obtain an integration by parts formula for Fourier-Feynman transforms. 3. We find the Fourier-Feynman transform of a functional F from a Banach algebra f after it has been multiplied by n linear factors. 4. We evaluate the analytic Feynman integral of functionals like those described in 3 above. A very fundamental result by Cameron and Storvick [5, Theorem 1], in which they express the analytic Feynman integral of the first variation of a functional F in terms of the analytic Feynman integral of F multiplied by a linear factor, plays a key role throughout this paper. © 1998 Springer.
引用
收藏
页码:277 / 292
页数:15
相关论文
共 50 条
  • [1] Translation theorems for Fourier-Feynman transforms and conditional Fourier-Feynman transforms
    Chang, SJ
    Park, C
    Skoug, D
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (02) : 477 - 496
  • [2] Generalized Fourier-Feynman transforms and a first variation on function space
    Chang, SJ
    Skoug, D
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2003, 14 (05) : 375 - 393
  • [3] Convolution and Fourier-Feynman transforms
    Huffman, T
    Park, C
    Skoug, D
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (03) : 827 - 841
  • [4] Fourier-Feynman transform, convolution and first variation
    J. M. Ahn
    K. S. Chang
    B. S. Kim
    I. Yoo
    [J]. Acta Mathematica Hungarica, 2003, 100 : 215 - 235
  • [5] Fourier-Feynman transform, convolution and first variation
    Ahn, JM
    Chang, KS
    Kim, BS
    Yoo, I
    [J]. ACTA MATHEMATICA HUNGARICA, 2003, 100 (03) : 215 - 235
  • [6] ANALYTIC FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTION
    HUFFMAN, T
    PARK, C
    SKOUG, D
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (02) : 661 - 673
  • [7] Fourier-Feynman transforms on Wiener spaces
    Yoo, I
    Chang, KS
    Cho, DH
    Kim, BS
    Song, TS
    [J]. STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS (SAMP/ANESTOC 2002), 2004, : 183 - 201
  • [8] Sequential Fourier-Feynman transform, convolution and first variation
    Chang, K. S.
    Cho, D. H.
    Kim, B. S.
    Song, T. S.
    Yoo, I.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (04) : 1819 - 1838
  • [9] Classes of Fourier-Feynman transforms on Wiener space
    Chang, Seung Jun
    Choi, Jae Gil
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (02) : 979 - 993
  • [10] GENERALIZED FIRST VARIATION AND GENERALIZED SEQUENTIAL FOURIER-FEYNMAN TRANSFORM
    Kim, Byoung Soo
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (04): : 521 - 536