Scheduling jobs with equal processing times on a single machine: minimizing maximum lateness and makespan

被引:0
|
作者
Alexander A. Lazarev
Dmitry I. Arkhipov
Frank Werner
机构
[1] V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences,International Laboratory of Decision Choice and Analysis
[2] Lomonosov Moscow State University,Faculty of Mathematics, Institute of Mathematical Optimization
[3] Moscow Institute of Physics and Technology,undefined
[4] National Research University Higher School of Economics,undefined
[5] Otto-von-Guericke University Magdeburg,undefined
来源
Optimization Letters | 2017年 / 11卷
关键词
Scheduling; Single machine; Equal processing times ; Polynomial algorithms; Bi-criteria problem;
D O I
暂无
中图分类号
学科分类号
摘要
The following special case of the classical NP-hard scheduling problem 1|rj|Lmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1|r_j|L_{\max }$$\end{document} is considered. There is a set of jobs N={1,2,…,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N= \{ 1, 2, \ldots , n \}$$\end{document} with identical processing times pj=p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_j=p$$\end{document} for all jobs j∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j \in N$$\end{document}. All jobs have to be processed on a single machine. The optimization criterion is the minimization of maximum lateness Lmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\max }$$\end{document}. We analyze algorithms for the makespan problem 1|rj|Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1|r_j|C_{\max }$$\end{document}, presented by Garey et al. (SIAM J Comput 10(2):256–269, 1981), Simons (A fast algorithm for single processor scheduling. In: 19th Annual symposium on foundations of computer science (Ann Arbor, Mich., 1978, 1978) and Benson’s algorithm (J Glob Optim 13(1):1–24, 1998) and give two polynomial algorithms to solve the problem under consideration and to construct the Pareto set with respect to the criteria Lmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\max }$$\end{document} and Cmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\max }$$\end{document}. The complexity of the presented algorithms is O(Q·nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(Q \cdot n \log n )$$\end{document} and O(n3logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^3 \log n)$$\end{document}, respectively, where 10-Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-Q}$$\end{document} is the accuracy of the input-output parameters.
引用
收藏
页码:165 / 177
页数:12
相关论文
共 50 条