We present an extensive analysis of ΔF = 2 observables and of B → Xsγ in the framework of a specific Maximally Gauged Flavour (MGF) model of Grinstein et al. including all relevant contributions, in particular tree-level heavy gauge boson exchanges whose effects are studied in detail in the present paper for the first time. The model allows in principle for significant deviations from the Standard Model predictions for εK, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \Delta {M_B}_{{_{{d,s}}}} $\end{document}, mixing induced CP -asymmetries \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ {S_{{\psi K}}}_{{_{\text{S}}}} $\end{document} and Sψϕ and B → Xsγ decay. The tension between εK and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ {S_{{\psi K}}}_{{_{\text{S}}}} $\end{document} present in the SM can be removed by enhancing |εK| without modifying \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ {S_{{\psi K}}}_{{_{\text{S}}}} $\end{document}. In this case, we find that in this model i) the results for Sψϕ and B → Xsγ turn out to be SM-like, ii) the exclusive determination of |Vub| is favoured and most importantly iii) the values of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \Delta {M_B}_{{_d}} $\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \Delta {M_{{{B_s}}}} $\end{document} being strongly correlated in this model with εK turn out to be much larger than the data for the central values of input parameters: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \Delta {M_{{{B_d}}}} \approx 0.{75}/ps $\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \Delta {M_{{{B_s}}}} \approx {27}/ps $\end{document}. Therefore, from the present perspective, the model suffers from a serious \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ {\varepsilon_K} - \Delta {M_{{{B_{{d,s}}}}}} $\end{document} tension. However, this tension can be softened considering theoretical and parametric uncertainties and in particular the decrease of the weak decay constants. On the other side, the model can be strongly constrained considering the theoretically cleaner ratios \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \Delta {M_{{{B_d}}}}/\Delta {M_{{{B_s}}}} $\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ BR\left( {{B^{ + }} \to {\tau^{ + }}\nu } \right)/\Delta {M_{{{B_d}}}} $\end{document} and we find that it is unable to remove simultaneously all the SM tensions on the data. Finally, we compare the pattern of flavour violation in MGF with selected extensions of the SM.