Exact Inference of a Simple Step-Stress Model with Hybrid Type-II Stress Changing Time

被引:0
|
作者
Debashis Samanta
Arnab Koley
Arindam Gupta
Debasis Kundu
机构
[1] Aliah University,Department of Statistics and Informatics
[2] Indian Institute of Management Indore,Operations Management and Quantitative Techniques
[3] Burdwan University,Department of Statistics
[4] Indian Institute of Technology Kanpur,Department of Mathematics and Statistics
关键词
Step-stress life-tests; Maximum likelihood estimator; Approximate confidence interval; Bias-corrected accelerated bootstrap confidence interval; Optimality;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we consider a simple step-stress model for exponentially distributed lifetime units. As failure rate is lower at the initial stress level, therefore, it is important to pay more attention to the stress changing time. Here, we consider a simple step-stress model where the stress level changes either after a prefixed time or after a prefixed number of failures, whichever occurs later. It ensures a prefixed minimum number of failures at the first stress level and also sets up a control on the expected experimental time. We have obtained the maximum likelihood estimators of the model parameters along with their exact distributions. The monotonicity properties of the maximum likelihood estimators have been established here, and it can be used to construct the exact confidence intervals of the unknown parameters. We provide approximate and bias-corrected accelerated bootstrap confidence intervals of the model parameters. We also define an optimality criteria and based on that obtain an optimal stress changing time for a given sample size. Finally, an extensive simulation study has been performed to asses the performance of the proposed methods and provide the analyses of two data sets for illustrative purpose.
引用
收藏
相关论文
共 50 条