Let F be a binary form with integer coefficients, non-zero discriminant and degree d with d at least 3. Let RF(Z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_F(Z)$$\end{document} denote the number of integers of absolute value at most Z which are represented by F. We prove that there is a positive number CF\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_F$$\end{document} such that RF(Z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_F(Z)$$\end{document} is asymptotic to CFZ2d\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C_F Z^{\frac{2}{d}}$$\end{document}.
机构:
Univ Paris Saclay, Inst Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, FranceUniv Paris Saclay, Inst Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, France
Fouvry, Etienne
Levesque, Claude
论文数: 0引用数: 0
h-index: 0
机构:
Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, CanadaUniv Paris Saclay, Inst Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, France
Levesque, Claude
Waldschmidt, Michel
论文数: 0引用数: 0
h-index: 0
机构:
UPMC Univ Paris 06, Sorbonne Univ, UMR IMJ PRG 7586, F-75005 Paris, FranceUniv Paris Saclay, Inst Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, France