On the representation of integers by binary forms

被引:0
|
作者
C. L. Stewart
Stanley Yao Xiao
机构
[1] University of Waterloo,Department of Pure Mathematics
[2] University of Toronto,Department of Mathematics
[3] Bahen Centre,undefined
来源
Mathematische Annalen | 2019年 / 375卷
关键词
Primary 11D45; Secondary 11D59; 11E76;
D O I
暂无
中图分类号
学科分类号
摘要
Let F be a binary form with integer coefficients, non-zero discriminant and degree d with d at least 3. Let RF(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_F(Z)$$\end{document} denote the number of integers of absolute value at most Z which are represented by F. We prove that there is a positive number CF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_F$$\end{document} such that RF(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_F(Z)$$\end{document} is asymptotic to CFZ2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_F Z^{\frac{2}{d}}$$\end{document}.
引用
收藏
页码:133 / 163
页数:30
相关论文
共 50 条