The L-series of a cubic fourfold

被引:0
|
作者
Klaus Hulek
Remke Kloosterman
机构
[1] Universität Hannover,Institut für Algebraische Geometrie
来源
manuscripta mathematica | 2007年 / 124卷
关键词
11G40; 14G10; 14G25; 14J35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the L-series of cubic fourfolds. Our main result is that, if X/C is a special cubic fourfold associated to some polarized K3 surface S, defined over a number field K and satisfying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{[2]}(K) \neq \emptyset$$\end{document} , then X has a model over K such that the L-series of the primitive cohomology of X/K can be expressed in terms of the L-series of S/K. This allows us to compute the L-series for a discrete dense subset of cubic fourfolds in the moduli spaces of certain special cubic fourfolds. We also discuss a concrete example.
引用
收藏
页码:391 / 407
页数:16
相关论文
共 50 条