New methods for computing fuzzy eigenvalues and fuzzy eigenvectors of fuzzy matrices using nonlinear programming approach

被引:0
|
作者
Somaye Khosravi
Ali Asghar Hosseinzadeh
Armin Ghane Kanafi
Amir Hossein Refahi Sheikhani
机构
[1] Islamic Azad University,Department of Mathematics, Lahijan Branch
来源
Soft Computing | 2023年 / 27卷
关键词
Fuzzy number; Fuzzy eigenvalues; Fuzzy eigenvector; Fuzzy triangular matrix;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new method to obtain the eigenvalues and fuzzy triangular eigenvectors of a fuzzy triangular matrix A~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\tilde{A}} \right)$$\end{document}, where the elements of the fuzzy triangular matrix are given. For this purpose, we solve 1-cut of a fuzzy triangular matrix A~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\tilde{A}} \right)$$\end{document} to obtain 1-cut of eigenvalues and eigenvectors. Considering the interval system A~αX~α=λ~αX~α0≤α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ {\tilde{A}} \right]_{\alpha } \left[ {\tilde{X}} \right]_{\alpha } = \left[ {\tilde{\lambda }} \right]_{\alpha } \left[ {\tilde{X}} \right]_{\alpha } 0 \le \alpha \le 1$$\end{document} as α-cut of the fuzzy system A~X~=λ~X~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{A}\tilde{X} = \tilde{\lambda }\tilde{X}$$\end{document}, to determine the left and right width of eigenvalues λ~α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ {\tilde{\lambda }} \right]_{\alpha }$$\end{document} and eigenvector elements X~α0≤α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ {\tilde{X}} \right]_{\alpha } 0 \le \alpha \le 1$$\end{document}, we make a system of linear and nonlinear equations and inequalities. And we propose nonlinear programming models to solve the system of linear and nonlinear equations and inequalities and to calculate λ~α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ {\tilde{\lambda }} \right]_{\alpha }$$\end{document} and X~α0≤α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ {\tilde{X}} \right]_{\alpha } 0 \le \alpha \le 1$$\end{document}. Furthermore, we define three other new eigenvalues (namely, fuzzy escribed eigenvalue, fuzzy peripheral eigenvalue, and fuzzy approximate eigenvalue) for a fuzzy triangular matrix (Ã) that the fuzzy eigenvalue and fuzzy eigenvector cannot be obtained based on interval calculations. Therefore, the fuzzy escribed eigenvalue which is placed in a tolerable fuzzy triangular eigenvalue set, the fuzzy peripheral eigenvalue placed in a controllable fuzzy triangular eigenvalue set, and the fuzzy approximate eigenvalue placed in an approximate fuzzy triangular eigenvalue set is defined in this paper. Finally, numerical examples are presented to illustrate the proposed method.
引用
收藏
页码:4425 / 4449
页数:24
相关论文
共 50 条
  • [1] New methods for computing fuzzy eigenvalues and fuzzy eigenvectors of fuzzy matrices using nonlinear programming approach
    Khosravi, Somaye
    Hosseinzadeh, Ali Asghar
    Kanafi, Armin Ghane
    Sheikhani, Amir Hossein Refahi
    SOFT COMPUTING, 2023, 27 (08) : 4425 - 4449
  • [2] A method to find fuzzy eigenvalues and fuzzy eigenvectors of fuzzy matrix
    Tofigh Allahviranloo
    Laleh Hooshangian
    Neural Computing and Applications, 2013, 23 : 1159 - 1167
  • [3] A method to find fuzzy eigenvalues and fuzzy eigenvectors of fuzzy matrix
    Allahviranloo, Tofigh
    Hooshangian, Laleh
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (3-4): : 1159 - 1167
  • [4] Standard eigenvectors of generalized fuzzy matrices
    Fan, Zhou-Tian
    Ren, Zhi-Hua
    Beijing Gongye Daxue Xuebao/Journal of Beijing University of Technology, 2010, 36 (10): : 1437 - 1440
  • [5] NONLINEAR FUZZY FRACTIONAL SIGNOMIAL PROGRAMMING PROBLEM: A FUZZY GEOMETRIC PROGRAMMING SOLUTION APPROACH
    Mishra, Sudipta
    Ota, Rashmi Ranjan
    Nayak, Suvasis
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (03) : 1579 - 1597
  • [6] Generalized fuzzy eigenvectors of real symmetric matrices
    Guo, Xiaobin
    Chen, Ying
    Zhuo, Quanxiu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (05) : 7459 - 7467
  • [7] Similarity relations, eigenvalues and eigenvectors of bipolar fuzzy matrix
    Mondal, Sanjib
    Pal, Madhumangal
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (04) : 2297 - 2307
  • [8] New Approach to Fuzzy Decision Matrices
    Rotterova, Pavla
    Pavlacka, Ondrej
    ACTA POLYTECHNICA HUNGARICA, 2017, 14 (05) : 85 - 102
  • [9] A NEW APPROACH TO FUZZY-PROGRAMMING
    OSTASIEWICZ, W
    FUZZY SETS AND SYSTEMS, 1982, 7 (02) : 139 - 152
  • [10] A new fuzzy programming technique approach to solve fuzzy transportation problem
    Kaur, Dalbinder
    Mukherjee, Sathi
    Basu, Kajla
    2014 2ND INTERNATIONAL CONFERENCE ON BUSINESS AND INFORMATION MANAGEMENT (ICBIM), 2014,