Automatically evaluating balance using machine learning and data from a single inertial measurement unit

被引:0
|
作者
Fahad Kamran
Kathryn Harrold
Jonathan Zwier
Wendy Carender
Tian Bao
Kathleen H. Sienko
Jenna Wiens
机构
[1] University of Michigan,Computer Science and Engineering
[2] University of Michigan,Mechanical Engineering
[3] Michigan Medicine,Department of Otolaryngology
关键词
Balance training; Wearable sensors; Machine learning; Telerehabilitation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Automatically evaluating balance using machine learning and data from a single inertial measurement unit
    Kamran, Fahad
    Harrold, Kathryn
    Zwier, Jonathan
    Carender, Wendy
    Bao, Tian
    Sienko, Kathleen H.
    Wiens, Jenna
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2021, 18 (01)
  • [2] Automatically Evaluating Balance: A Machine Learning Approach
    Bao, Tian
    Klatt, Brooke N.
    Whitney, Susan L.
    Sienko, Kathleen H.
    Wiens, Jenna
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (02) : 179 - 186
  • [3] Evaluating Rehabilitation Exercise Performance Using a Single Inertial Measurement Unit
    Giggins, Oonagh
    Kelly, Daniel
    Caulfield, Brian
    PROCEEDINGS OF THE 2013 7TH INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING TECHNOLOGIES FOR HEALTHCARE AND WORKSHOPS (PERVASIVEHEALTH 2013), 2013, : 49 - 56
  • [4] Evaluating Squat Performance with a Single Inertial Measurement Unit
    O'Reilly, Martin
    Whelan, Darragh
    Chanialidis, Charalampos
    Friel, Nial
    Delahunt, Eamonn
    Ward, Tomas
    Caulfield, Brian
    2015 IEEE 12TH INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN), 2015,
  • [5] Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning
    Braganca, F. M. Serra
    Broome, S.
    Rhodin, M.
    Bjornsdottir, S.
    Gunnarsson, V
    Voskamp, J. P.
    Persson-Sjodin, E.
    Back, W.
    Lindgren, G.
    Novoa-Bravo, M.
    Roepstorff, C.
    van der Zwaag, B. J.
    Van Weeren, P. R.
    Hernlund, E.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning
    F. M. Serra Bragança
    S. Broomé
    M. Rhodin
    S. Björnsdóttir
    V. Gunnarsson
    J. P. Voskamp
    E. Persson-Sjodin
    W. Back
    G. Lindgren
    M. Novoa-Bravo
    A. I. Gmel
    C. Roepstorff
    B. J. van der Zwaag
    P. R. Van Weeren
    E. Hernlund
    Scientific Reports, 10
  • [7] Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit
    Vu, Huong Thi Thu
    Cao, Hoang-Long
    Dong, Dianbiao
    Verstraten, Tom
    Geeroms, Joost
    Vanderborght, Bram
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [8] Balance Evaluation by Inertial Measurement Unit
    Codina, Marc
    Navarrete, Manuel
    Castells-Rufas, David
    Carrabina, Jordi
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING & AMBIENT INTELLIGENCE (UCAMI 2022), 2023, 594 : 71 - 76
  • [9] Learning Position From Vehicle Vibration Using an Inertial Measurement Unit
    Or, Barak
    Segol, Nimrod
    Eweida, Areej
    Freydin, Maxim
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (09) : 10766 - 10776
  • [10] Author Correction: Improving gait classification in horses by using inertial measurement unit (IMU) generated data and machine learning
    F. M. Serra Bragança
    S. Broomé
    M. Rhodin
    S. Björnsdóttir
    V. Gunnarsson
    J. P. Voskamp
    E. Persson‑Sjodin
    W. Back
    G. Lindgren
    M. Novoa‑Bravo
    A. I. Gmel
    C. Roepstorff
    B. J. van der Zwaag
    P. R. Van Weeren
    E. Hernlund
    Scientific Reports, 11