Projective Structure, Symplectic Connection and Quantization

被引:0
|
作者
Indranil Biswas
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
来源
Letters in Mathematical Physics | 2002年 / 60卷
关键词
Flat connection; Higgs bundle; projective structure; quantization;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a connected Riemann surface equipped with a projective structure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{p}$$ \end{document}. Let E be a holomorphic symplectic vector bundle over X equipped with a flat connection. There is a holomorphic symplectic structure on the total space of the pullback of E to the space of all nonzero holomorphic cotangent vectors on X. Using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{p}$$ \end{document}, this symplectic form is quantized. A moduli space of Higgs bundles on a compact Riemann surface has a natural holomorphic symplectic structure. Using \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{p}$$ \end{document}, a quantization of this symplectic form over a Zariski open subset of the moduli space of Higgs bundles is constructed.
引用
收藏
页码:239 / 256
页数:17
相关论文
共 50 条