Weak-type maximal function estimates on the infinite-dimensional torus

被引:0
|
作者
Dariusz Kosz
Guillermo Rey
Luz Roncal
机构
[1] Basque Center for Applied Mathematics,Department of Mathematics
[2] Wrocław University of Science and Technology,undefined
[3] Universidad Autónoma de Madrid,undefined
[4] Ikerbasque,undefined
[5] Basque Foundation for Science,undefined
[6] UPV/EHU,undefined
来源
Mathematische Zeitschrift | 2023年 / 304卷
关键词
Infinite-dimensional torus; Maximal operator; Weak-type estimate; Primary 43A70; Secondary 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove necessary and sufficient conditions for the weak-Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} boundedness, for p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (1,\infty )$$\end{document}, of a maximal operator on the infinite-dimensional torus. In the endpoint case p=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=1$$\end{document} we obtain the same weak-type inequality enjoyed by the strong maximal function in dimension two. Our results are quantitatively sharp.
引用
收藏
相关论文
共 50 条
  • [1] Weak-type maximal function estimates on the infinite-dimensional torus
    Kosz, Dariusz
    Rey, Guillermo
    Roncal, Luz
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (03)
  • [2] Maximal operators on the infinite-dimensional torus
    Dariusz Kosz
    Javier C. Martínez-Perales
    Victoria Paternostro
    Ezequiel Rela
    Luz Roncal
    [J]. Mathematische Annalen, 2023, 385 : 1 - 39
  • [3] Maximal operators on the infinite-dimensional torus
    Kosz, Dariusz
    Martinez-Perales, Javier C.
    Paternostro, Victoria
    Rela, Ezequiel
    Roncal, Luz
    [J]. MATHEMATISCHE ANNALEN, 2023, 385 (3-4) : 95 - 95
  • [4] Weak-type Estimates in Morrey Spaces for Maximal Commutator and Commutator of Maximal Function
    Gogatishvili, Amiran
    Mustafayev, Rza
    Agcayazi, Mujdat
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2018, 41 (01) : 193 - 218
  • [5] Weak-type estimates for martingale maximal functions
    Osekowski, Adam
    Wojtas, Mateusz
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [6] Weak-type estimate for a maximal function
    Patel, S
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (01) : 341 - 368
  • [7] BEST CONSTANTS IN THE WEAK-TYPE ESTIMATES FOR UNCENTERED MAXIMAL OPERATORS
    Osekowski, Adam
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (03) : 655 - 663
  • [8] MAXIMAL ESTIMATES ON MEASURE-SPACES FOR WEAK-TYPE MULTIPLIERS
    ASMAR, N
    BERKSON, E
    GILLESPIE, TA
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 1995, 5 (02) : 167 - 179
  • [9] Lagrangian dynamics on an infinite-dimensional torus; a Weak KAM theorem
    Gangbo, W.
    Tudorascu, A.
    [J]. ADVANCES IN MATHEMATICS, 2010, 224 (01) : 260 - 292
  • [10] SHARP WEAK-TYPE ESTIMATES FOR THE DYADIC-LIKE MAXIMAL OPERATORS
    Osekowski, Adam
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (04): : 1031 - 1050