Improved Lower Bound for Online Strip Packing

被引:0
|
作者
Rolf Harren
Walter Kern
机构
[1] Max-Planck-Institut für Informatik (MPII),Department of Applied Mathematics
[2] University of Twente,undefined
来源
关键词
Strip packing; Rectangle packing; Online algorithms; Lower bounds;
D O I
暂无
中图分类号
学科分类号
摘要
We study the online strip packing problem and derive an improved lower bound of ρ≥2.589… for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform. 18:207–225, 1982) using only two types of rectangles. In addition, we present an online algorithm with competitive ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(3+\sqrt{5})/2 = 2.618\ldots$\end{document} for packing instances of this type.
引用
收藏
页码:41 / 72
页数:31
相关论文
共 50 条
  • [1] Improved Lower Bound for Online Strip Packing
    Harren, Rolf
    Kern, Walter
    THEORY OF COMPUTING SYSTEMS, 2015, 56 (01) : 41 - 72
  • [2] A new lower bound for online strip packing
    Yu, Guosong
    Mao, Yanling
    Xiao, Jiaoliao
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 250 (03) : 754 - 759
  • [3] AN IMPROVED LOWER BOUND FOR ONLINE BIN PACKING ALGORITHMS
    VANVLIET, A
    INFORMATION PROCESSING LETTERS, 1992, 43 (05) : 277 - 284
  • [4] A LOWER BOUND FOR ONLINE BIN PACKING
    LIANG, FM
    INFORMATION PROCESSING LETTERS, 1980, 10 (02) : 76 - 79
  • [5] A lower bound for online rectangle packing
    Leah Epstein
    Journal of Combinatorial Optimization, 2019, 38 : 846 - 866
  • [6] A lower bound for online rectangle packing
    Epstein, Leah
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (03) : 846 - 866
  • [7] An improved lower bound for the bin packing problem
    Chen, BT
    Srivastava, B
    DISCRETE APPLIED MATHEMATICS, 1996, 66 (01) : 81 - 94
  • [8] A new upper bound for the online square packing problem in a strip
    Guosong Yu
    Yanling Mao
    Jiaoliao Xiao
    Journal of Combinatorial Optimization, 2017, 33 : 1411 - 1420
  • [9] A new upper bound for the online square packing problem in a strip
    Yu, Guosong
    Mao, Yanling
    Xiao, Jiaoliao
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (04) : 1411 - 1420
  • [10] A New Lower Bound for Classic Online Bin Packing
    János Balogh
    József Békési
    György Dósa
    Leah Epstein
    Asaf Levin
    Algorithmica, 2021, 83 : 2047 - 2062