Precise asymptotic formulas for variational eigencurves of semilinear two-parameter elliptic eigenvalue problems

被引:0
|
作者
Tetsutaro Shibata
机构
[1] The Division of Mathematical and Information Sciences,
[2] Faculty of Integrated Arts and Sciences,undefined
[3] Hiroshima University,undefined
[4] Higashi-Hiroshima,undefined
[5] 739-8521,undefined
[6] Japan,undefined
[7] e-mail: shibata@mis.hiroshima-u.ac.jp,undefined
来源
关键词
Mathematics Subject Classification (2000). 35P30 Key words. two-parameter variational eigencurves;
D O I
10.1007/s10231-002-0062-0
中图分类号
学科分类号
摘要
We consider the two-parameter nonlinear eigenvalue problem¶−Δu = μu − λ(u + up + f(u)),  u > 0 in Ω,  u = 0 on ∂Ω,¶where p>1 is a constant and μ,λ>0 are parameters. We establish the asymptotic formulas for the variational eigencurves λ=λ(μ,α) as μ→∞, where α>0 is a normalizing parameter. We emphasize that the critical case from a viewpoint of the two-term asymptotics of the eigencurve is p=3. Moreover, it is shown that p=5/3 is also a critical exponent from a view point of the three-term asymptotics when Ω is a ball or an annulus. This sort of criticality for two-parameter problems seems to be new.
引用
收藏
页码:211 / 229
页数:18
相关论文
共 50 条