Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate

被引:0
|
作者
Ning Li
Hui Gao
Zhixin Liu
Qianjun Zhi
Bowen Li
Lei Gong
Baotong Chen
Tao Yang
Kang Wang
Peng Jin
Jianzhuang Jiang
机构
[1] University of Science and Technology Beijing,Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Eng
[2] Hebei University of Technology,School of Materials Science and Engineering
[3] University of Science and Technology Beijing,Innovation Research Institute for Carbon Neutrality
来源
Science China Chemistry | 2023年 / 66卷
关键词
covalent organic frameworks; phthalocyanine; TiO; electrocatalytic urea synthesis; C–N bond coupling;
D O I
暂无
中图分类号
学科分类号
摘要
Electrocatalytic synthesis of urea from CO2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ - $$\end{document} under ambient conditions provides an appealing alternative to the traditional energy-intensive urea synthetic protocol. Highly active and selective electrocatalysts for efficient urea production are therefore urgently desired owing to the unsatisfactory performance of the thus far reported catalysts. Herein, a phthalocyanine-based (Pc-based) covalent organic framework (COF), namely CoPc-COF, fabricated from the nucleophilic substitution reaction of hexadecafluorophthalocyaninato cobalt with octahydroxylphthalocyanine cobalt, in situ grew on the surface of multilayered TiO2 nanotubes (NTs), generating the CoPc-COF@TiO2 NTs composite. Powder X-ray diffraction analysis in combination with electron microscopy measurements discloses the uniform coating of crystalline CoPc-COF on the multilayered TiO2 NTs in CoPc-COF@TiO2 NTs. Remarkably, electrochemical tests reveal the superior electrocatalytic activity of CoPc-COF@TiO2 NTs towards urea production from CO2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ - $$\end{document} with a record-high yield of 1,205 µg h−1 cm−2 and an outstanding Faraday efficiency of 49% at −0.6 V versus reversible hydrogen electrode due to the significant synergistic catalysis effect. {tiIn situ} attenuated total reflection infrared spectroscopic investigation and theoretical calculations unveil the efficient C–N coupling reaction between *CO intermediate derived from CO2 on CoPc moieties and *NH2 intermediate formed from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{N}}{{\rm{O}}_3}^ - $$\end{document} on TiO2 NTs during the urea formation process over CoPc-COF@TiO2 NTs. This work should be helpful towards designing and fabricating high-performance electrocatalysts for sustainable synthesis of urea through efficient synergistic effect of multiactive centers
引用
收藏
页码:1417 / 1424
页数:7
相关论文
共 50 条
  • [1] Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate
    Ning Li
    Hui Gao
    Zhixin Liu
    Qianjun Zhi
    Bowen Li
    Lei Gong
    Baotong Chen
    Tao Yang
    Kang Wang
    Peng Jin
    Jianzhuang Jiang
    Science China(Chemistry), 2023, (05) : 1417 - 1424
  • [2] Metalphthalocyanine frameworks grown on TiO2 nanotubes for synergistically and efficiently electrocatalyzing urea production from CO2 and nitrate
    Li, Ning
    Gao, Hui
    Liu, Zhixin
    Zhi, Qianjun
    Li, Bowen
    Gong, Lei
    Chen, Baotong
    Yang, Tao
    Wang, Kang
    Jin, Peng
    Jiang, Jianzhuang
    SCIENCE CHINA-CHEMISTRY, 2023, 66 (05) : 1417 - 1424
  • [3] Photocatalytic Reduction of CO2 by TiO2 Nanotubes
    Chang, H-H
    Wei, L-W
    Huang, H-L
    Chang, H-Y
    Wang, H. Paul
    NANO, 2022, 17 (04)
  • [4] Photocatalytic reduction of CO2 to fuels by novel TiO2 nanotubes
    Zhang, Qianyi
    Ackerman, Erik
    Li, Ying
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [5] Contribution of CuxO distribution, shape and ratio on TiO2 nanotubes to improve methanol production from CO2 photoelectroreduction
    Juliana de Almeida
    Murilo Santos Pacheco
    Juliana Ferreira de Brito
    Christiane de Arruda Rodrigues
    Journal of Solid State Electrochemistry, 2020, 24 : 3013 - 3028
  • [6] Syngas production by electrocatalytic reduction of CO2 using Ag-decorated TiO2 nanotubes
    Farkhondehfal, M. A.
    Hernandez, S.
    Rattalino, M.
    Makkee, M.
    Lamberti, A.
    Chiodoni, A.
    Bejtka, K.
    Sacco, A.
    Pirri, F. C.
    Russo, N.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (50) : 26458 - 26471
  • [7] Role of surface reconstruction on Cu/TiO2 nanotubes for CO2 conversion
    Liu, Chao
    Nauert, Scott L.
    Alsina, Marco A.
    Wang, Dingdi
    Grant, Alexander
    He, Kai
    Weitz, Eric
    Nolan, Michael
    Gray, Kimberly A.
    Notestein, Justin M.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 255
  • [8] Photocatalytic Reduction of CO2 in Cu-doped TiO2 Nanotubes
    Meng, Jianling
    2018 9TH INTERNATIONAL CONFERENCE ON CIVIL ENGINEERING, MATERIALS AND MACHINERY (ICCEMM 2018), 2018, : 59 - 63
  • [9] Production of TiO2 Nanotubes and nanoparticles
    Fraga, T. M.
    Pereyra, I.
    Albertin, K. F.
    MICROELECTRONICS TECHNOLOGY AND DEVICES - SBMICRO 2011, 2011, 39 (01): : 131 - 136
  • [10] Urea Electrosynthesis from Nitrate and CO2 on Diatomic Alloys
    Chen, Kai
    Ma, Danyang
    Zhang, Ying
    Wang, Fuzhou
    Yang, Xing
    Wang, Xiaomei
    Zhang, Hu
    Liu, Xijun
    Bao, Rui
    Chu, Ke
    ADVANCED MATERIALS, 2024, 36 (30)