On the solutions and stability for an auto-parametric dynamical system

被引:0
|
作者
T. S. Amer
I. M. Abady
A. M. Farag
机构
[1] Tanta University,Mathematics Department, Faculty of Science
[2] Suez University,Mathematics and Computer Science Department, Faculty of Science
来源
关键词
Nonlinear dynamics; Lagrange’s equations; Perturbation techniques; Damped vibrating systems; Stability;
D O I
暂无
中图分类号
学科分类号
摘要
The main goal of this study is to look at the motion of a damped two degrees-of-freedom (DOF) auto-parametric dynamical system. Lagrange’s equations are used to derive the governing equations of motion (EOM). Up to a good desired order, the approximate solutions are achieved utilizing the method of multiple scales (MMS). Two cases of resonance, namely; internal and primary external one are examined simultaneously to explore the solvability conditions of the motion and the corresponding modulation equations (ME). These equations are reduced to two algebraic equations, through the elimination of the modified phases, in terms of the detuning parameters and the amplitudes. The kind of stable or unstable fixed point is estimated. In certain plots, the time histories graphs of the achieved solutions, as well as the adjusted phases and amplitudes are used to depict the motion of the system at any instant. The conditions of Routh–Hurwitz are used to study the various stability zones and their analysis. The achieved outcomes are considered to be novel and original, in which the used strategy is applied on a particular dynamical system. The significance of the studied system can be observed in its applications in a number of disciplines, such as swaying structures and rotor dynamics.
引用
收藏
页码:3249 / 3266
页数:17
相关论文
共 50 条
  • [1] On the solutions and stability for an auto-parametric dynamical system
    Amer, T. S.
    Abady, I. M.
    Farag, A. M.
    [J]. ARCHIVE OF APPLIED MECHANICS, 2022, 92 (11) : 3249 - 3266
  • [2] Dynamical Stability of a 3-DOF Auto-Parametric Vibrating System
    T. S. Amer
    Galal M. Moatimid
    W. S. Amer
    [J]. Journal of Vibration Engineering & Technologies, 2023, 11 : 4151 - 4186
  • [3] The Stability Analysis of a Vibrating Auto-Parametric Dynamical System Near Resonance
    Amer, Tarek S.
    Starosta, Roman
    Almahalawy, Ashraf
    Elameer, Abdelkarim S.
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [4] Dynamical Stability of a 3-DOF Auto-Parametric Vibrating System
    Amer, T. S.
    Moatimid, Galal M. M.
    Amer, W. S.
    [J]. JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (08) : 4151 - 4186
  • [5] Stability of the Dynamical Motion of a Damped 3DOF Auto-parametric Pendulum System
    T. S. Amer
    M. A. Bek
    M. S. Nael
    Magdy A. Sirwah
    A. Arab
    [J]. Journal of Vibration Engineering & Technologies, 2022, 10 : 1883 - 1903
  • [6] Stability of the Dynamical Motion of a Damped 3DOF Auto-parametric Pendulum System
    Amer, T. S.
    Bek, M. A.
    Nael, M. S.
    Sirwah, Magdy A.
    Arab, A.
    [J]. JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2022, 10 (05) : 1883 - 1903
  • [7] Stability of three degrees-of-freedom auto-parametric system
    He, Ji-Huan
    Amer, T. S.
    Abolila, A. F.
    Galal, A. A.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (11) : 8393 - 8415
  • [8] Stability of noisy nonlinear auto-parametric systems
    Namachchivaya, N. Sri
    Kok, David
    Ariaratnam, S. T.
    [J]. NONLINEAR DYNAMICS, 2007, 47 (1-3) : 143 - 165
  • [9] Stability of noisy nonlinear auto-parametric systems
    N. Sri Namachchivaya
    David Kok
    S. T. Ariaratnam
    [J]. Nonlinear Dynamics, 2007, 47 : 143 - 165
  • [10] Using delayed feedback to control the band of saturation control in an auto-parametric dynamical system
    Zhao Yan-Ying
    Yang Ru-Ming
    [J]. ACTA PHYSICA SINICA, 2011, 60 (10)