On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces

被引:0
|
作者
Chokkalingam Ravichandran
Dumitru Baleanu
机构
[1] RVS Technical Campus,Department of Mathematics, RVS Faculty of Engineering
[2] Cankaya University,Department of Mathematics and Computer Science, Faculty of Arts and Sciences
[3] King Abdulaziz University,Department of Chemical and Materials Engineering, Faculty of Engineering
[4] Institute of Space Sciences,undefined
关键词
controllability; Caputo fractional derivative; measures of noncompactness; fixed point theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this manuscript, we study the sufficient conditions for controllability for fractional functional integro-differential systems involving the Caputo fractional derivative of order α∈(0,1] in Banach spaces. Our main approach is based on fractional calculus, the properties of characteristic solution operators, Mönch’s fixed point theorem via measures of noncompactness. Particularly, these results are under some weakly compactness conditions. An example is presented in the end to show the applications of the obtained abstract results.
引用
收藏
相关论文
共 50 条
  • [1] On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces
    Ravichandran, Chokkalingam
    Baleanu, Dumitru
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [2] Controllability of Impulsive Fractional Functional Integro-Differential Equations in Banach Spaces
    Ravichandran, C.
    Trujillo, J. J.
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [3] Controllability of Fractional Neutral Stochastic Integro-Differential Systems with Infinite Delay
    Sun, Xichao
    Yan, Litan
    Cui, Jing
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [4] SEMILINEAR FRACTIONAL ORDER INTEGRO-DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN BANACH SPACES
    Aissani, Khalida
    Benchohra, Mouffak
    [J]. ARCHIVUM MATHEMATICUM, 2013, 49 (02): : 105 - 117
  • [5] Exact controllability of fractional neutral integro-differential systems with state-dependent delay in Banach spaces
    Kailasavalli, S.
    Baleanu, D.
    Suganya, S.
    Arjunan, M. Mallika
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (01): : 29 - 55
  • [6] Impulsive controllability of fractional differential systems with infinite delay in Banach spaces
    Zhang, Xianmin
    [J]. 2014 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2014), VOL 1, 2014, : 197 - 201
  • [7] Existence results for fractional neutral functional integro-differential evolution equations with infinite delay in Banach spaces
    Ravichandran, Chokkalingam
    Baleanu, Dumitru
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [8] Existence results for fractional neutral functional integro-differential evolution equations with infinite delay in Banach spaces
    Chokkalingam Ravichandran
    Dumitru Baleanu
    [J]. Advances in Difference Equations, 2013
  • [9] Controllability of fractional order integro-differential inclusions with infinite delay
    Aissani, Khalida
    Benchohra, Mouffak
    Darwish, Mohamed Abdalla
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2014, (52) : 1 - 18
  • [10] Controllability of impulsive functional differential systems with infinite delay in Banach spaces
    Chang, Yong-Kui
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 33 (05) : 1601 - 1609