Testing for the change of the mean-reverting parameter of an autoregressive model with stationary Gaussian noise

被引:0
|
作者
Alexandre Brouste
Chunhao Cai
Marius Soltane
Longmin Wang
机构
[1] Le Mans Université,Laboratoire Manceau de Mathématiques
[2] Shanghai University of Finance and Economics,School of Mathematics
[3] Nankai University,School of Mathematical Science
关键词
Autoregressive model; Change-point; Fractional Gaussian noise; Likelihood ratio test; Strong invariance principle;
D O I
暂无
中图分类号
学科分类号
摘要
The likelihood ratio test for a change in the mean-reverting parameter of a first order autoregressive model with stationary Gaussian noise is considered. The test statistic converges in distribution to the Gumbel extreme value distribution under the null hypothesis of no change-point for a large class of covariance structures including long-memory processes as the fractional Gaussian noise.
引用
收藏
页码:301 / 318
页数:17
相关论文
共 50 条
  • [1] Testing for the change of the mean-reverting parameter of an autoregressive model with stationary Gaussian noise
    Brouste, Alexandre
    Cai, Chunhao
    Soltane, Marius
    Wang, Longmin
    [J]. STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) : 301 - 318
  • [2] Estimation and testing in generalized mean-reverting processes with change-point
    Nkurunziza S.
    Zhang P.P.
    [J]. Statistical Inference for Stochastic Processes, 2018, 21 (1) : 191 - 215
  • [3] PARAMETER ESTIMATION FOR A REGIME-SWITCHING MEAN-REVERTING MODEL WITH JUMPS
    Wu, Ping
    Elliott, Robert J.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2005, 8 (06) : 791 - 806
  • [4] A mean-reverting currency model in an uncertain environment
    Yuanyuan Shen
    Kai Yao
    [J]. Soft Computing, 2016, 20 : 4131 - 4138
  • [5] A mean-reverting currency model in an uncertain environment
    Shen, Yuanyuan
    Yao, Kai
    [J]. SOFT COMPUTING, 2016, 20 (10) : 4131 - 4138
  • [6] Mean-reverting schemes for solving the CIR model
    Llamazares-Elias, S.
    Tocino, A.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 434
  • [7] STOCK-PRICE VOLATILITY, MEAN-REVERTING DIFFUSION, AND NOISE
    MERVILLE, LJ
    PIEPTEA, DR
    [J]. JOURNAL OF FINANCIAL ECONOMICS, 1989, 24 (01) : 193 - 214
  • [8] A Convenience Yield Approximation Model for Mean-Reverting Commodities
    Dockner, Engelbert J.
    Eksi, Zehra
    Rammerstorfer, Margarethe
    [J]. JOURNAL OF FUTURES MARKETS, 2015, 35 (07) : 625 - 654
  • [9] A mean-reverting stochastic model for the political business cycle
    Basak, Gopal K.
    Ghosh, Mrinal K.
    Mukherjee, Diganta
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2016, 34 (01) : 96 - 116
  • [10] Generalized Mean-Reverting 4/2 Factor Model
    Cheng, Yuyang
    Escobar-Anel, Marcos
    Gong, Zhenxian
    [J]. JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2019, 12 (04)