Nonlinear Elliptic Systems with Coupled Gradient Terms

被引:0
|
作者
Ahmed Attar
Rachid Bentifour
El-Haj Laamri
机构
[1] Université Abou Bakr Belkaïd,Laboratoire d’Analyse Nonlinéaire et Mathématiques Appliquées, Département de Mathématiques
[2] Tlemcen,Institut Elie Cartan
[3] Université Lorraine,undefined
来源
关键词
Nonlinear elliptic systems; Hamilton Jacobi equation; Fixed point theorem; Apriori estimates; 35J55; 35D10; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the existence and non-existence of nonnegative solutions to a class of nonlinear elliptic systems of type: {−Δu=|∇v|q+λfin Ω,−Δv=|∇u|p+μgin Ω,u=v=0on ∂Ω,u,v≥0in Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left \{ \textstyle\begin{array}{r@{\quad }c@{\quad }l@{\quad }l@{\quad }l} -\Delta u & = & |\nabla v|^{q}+\lambda f & \text{in } &\Omega , \\ -\Delta v& = &|\nabla u|^{p}+\mu g &\text{in } &\Omega , \\ u=v&=& 0 & \text{on } &\partial \Omega , \\ u,v& \geq & 0 & \text{in } &\Omega , \end{array}\displaystyle \right . $$\end{document} where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega $\end{document} is a bounded domain of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N}$\end{document} and p,q≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p, q\ge 1$\end{document}. f,g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f,g$\end{document} are nonnegative measurable functions with additional hypotheses and λ,μ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda , \mu \ge 0$\end{document}.
引用
收藏
页码:163 / 183
页数:20
相关论文
共 50 条
  • [1] Nonlinear Elliptic Systems with Coupled Gradient Terms
    Attar, Ahmed
    Bentifour, Rachid
    Laamri, El-Haj
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 163 - 183
  • [2] Liouville theorems for elliptic systems with nonlinear gradient terms
    Burgos-Perez, M. A.
    Garcia-Melian, J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (12) : 6316 - 6351
  • [3] Classification of radial solutions for semilinear elliptic systems with nonlinear gradient terms
    Singh, Gurpreet
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 129 : 77 - 103
  • [4] Coercive elliptic systems with gradient terms
    Filippucci, Roberta
    Vinti, Federico
    ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (02) : 165 - 182
  • [5] Solvability of nonlinear elliptic equations with gradient terms
    Felmer, Patricio
    Quaas, Alexander
    Sirakov, Boyan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (11) : 4327 - 4346
  • [6] Large solution to nonlinear elliptic equation with nonlinear gradient terms
    Huang, Shuibo
    Li, Wan-Tong
    Tian, Qiaoyu
    Mu, Chunlai
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (12) : 3297 - 3328
  • [7] Nonlinear elliptic inequalities with gradient terms on the Heisenberg group
    Bordoni, Sara
    Filippucci, Roberta
    Pucci, Patrizia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 262 - 279
  • [8] On certain nonlinear elliptic systems with indefinite terms
    Bensedik, Ahmed
    Bouchekif, Mohammed
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2002,
  • [9] Existence of Classical Solutions for Nonlinear Elliptic Equations with Gradient Terms
    Li, Yongxiang
    Ma, Weifeng
    ENTROPY, 2022, 24 (12)
  • [10] Fully Nonlinear Elliptic Equations with Gradient Terms on Hermitian Manifolds
    Guan, Bo
    Nie, Xiaolan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (16) : 14006 - 14042