Non-linear elastic behavior of light fibrous materials

被引:0
|
作者
M. Baudequin
G. Ryschenkow
S. Roux
机构
[1] Laboratoire “Surface du Verre et Interfaces” (UMR 125 CNRS/Saint-Gobain),
[2] CNRS/Saint-Gobain,undefined
关键词
PACS. 62.20.-x Mechanical properties of solids[:AND:]62.20.Dc Elasticity, elastic constants;
D O I
暂无
中图分类号
学科分类号
摘要
Light fibrous materials composed of elastic fibers display a non-linear elastic behavior, where the non-linearity is due to the increase in the number of contacts between fibers under compression. Testing glass wool under compression up to 95% shows such a strongly non-linear behavior. A model is proposed to account for the divergence of the compressive stress \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$ \end{document} as the strain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$ \end{document} approaches a threshold compression \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon ^*}$$ \end{document}, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \propto {({\varepsilon ^*} - \varepsilon )^{ - 3/2}}$$ \end{document}. Quantitative analysis of the experimental data on glass wool is fully consistent with this result.
引用
收藏
页码:157 / 162
页数:5
相关论文
共 50 条
  • [1] Non-linear elastic behavior of light fibrous materials
    Baudequin, M
    Ryschenkow, G
    Roux, S
    [J]. EUROPEAN PHYSICAL JOURNAL B, 1999, 12 (01): : 157 - 162
  • [2] On a class of non-linear elastic materials
    Padovani, C
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (52) : 7787 - 7807
  • [3] NON-LINEAR ELASTIC PROPERTIES OF A FIBROUS POLYURETHANE GRAFT
    HOW, TV
    CLARKE, RM
    ANNIS, D
    [J]. INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 1983, 6 (04): : 221 - 222
  • [4] Optimal design with non-linear elastic materials
    Pedersen, P
    [J]. TOPOLOGY OPTIMIZATION OF STRUCTURES AND COMPOSITE CONTINUA, 2000, 7 : 307 - 316
  • [5] Non-linear behavior in advanced materials
    Jun-wei Qiao
    Gang Wang
    Yong Zhang
    Peter K. Liaw
    Wei-hua Wang
    [J]. Journal of Iron and Steel Research International, 2017, 24 : 357 - 357
  • [6] Non-linear behavior in advanced materials
    Jun-wei Qiao
    Gang Wang
    Yong Zhang
    Peter K.Liaw
    Wei-hua Wang
    [J]. Journal of Iron and Steel Research(International), 2017, 24 (04) : 357 - 357
  • [7] A NON-LINEAR ELASTIC MODEL FOR ISOTROPIC MATERIALS WITH DIFFERENT BEHAVIOR IN TENSION AND COMPRESSION
    MEDRI, G
    [J]. JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1982, 104 (01): : 26 - 28
  • [8] Non-linear behavior in advanced materials
    Qiao, Jun-wei
    Wang, Gang
    Zhang, Yong
    Liaw, Peter K.
    Wang, Wei-hua
    [J]. JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2017, 24 (04) : 357 - 357
  • [9] NON-LINEAR ELASTIC BEHAVIOR AND INSTABILITIES IN CRYSTALS
    FISCHER, M
    ZAREMBOWITCH, A
    BREAZEALE, MA
    [J]. IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1981, 28 (05): : 374 - 374
  • [10] NON-LINEAR THEORY OF ELASTIC-MATERIALS WITH VOIDS
    NUNZIATO, JW
    COWIN, SC
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1979, 72 (02) : 175 - 201