A robust knockoff filter for sparse regression analysis of microbiome compositional data

被引:0
|
作者
Gianna Serafina Monti
Peter Filzmoser
机构
[1] University of Milano Bicocca,Department of Economics, Management and Statistics
[2] TU Wien,Institute of Statistics and Mathematical Methods in Economics
来源
Computational Statistics | 2024年 / 39卷
关键词
False discovery rate (FDR); High-dimensional regression; Knockoffs; Variable selection; Robustness;
D O I
暂无
中图分类号
学科分类号
摘要
Microbiome data analysis often relies on the identification of a subset of potential biomarkers associated with a clinical outcome of interest. Robust ZeroSum regression, an elastic-net penalized compositional regression built on the least trimmed squares estimator, is a variable selection procedure capable to cope with the high dimensionality of these data, their compositional nature, and, at the same time, it guarantees robustness against the presence of outliers. The necessity of discovering “true” effects and to improve clinical research quality and reproducibility has motivated us to propose a two-step robust compositional knockoff filter procedure, which allows selecting the set of relevant biomarkers, among the many measured features having a nonzero effect on the response, controlling the expected fraction of false positives. We demonstrate the effectiveness of our proposal in an extensive simulation study, and illustrate its usefulness in an application to intestinal microbiome analysis.
引用
收藏
页码:271 / 288
页数:17
相关论文
共 50 条
  • [1] A robust knockoff filter for sparse regression analysis of microbiome compositional data
    Monti, Gianna Serafina
    Filzmoser, Peter
    [J]. COMPUTATIONAL STATISTICS, 2024, 39 (01) : 271 - 288
  • [2] Compositional knockoff filter for high-dimensional regression analysis of microbiome data
    Srinivasan, Arun
    Xue, Lingzhou
    Zhan, Xiang
    [J]. BIOMETRICS, 2021, 77 (03) : 984 - 995
  • [3] REGRESSION ANALYSIS FOR MICROBIOME COMPOSITIONAL DATA
    Shi, Pixu
    Zhang, Anru
    Li, Hongzhe
    [J]. ANNALS OF APPLIED STATISTICS, 2016, 10 (02): : 1019 - 1040
  • [4] The knockoff filter for FDR control in group-sparse and multitask regression
    Dai, Ran
    Barber, Rina Foygel
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [5] Robust logistic zero-sum regression for microbiome compositional data
    Monti, G. S.
    Filzmoser, P.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2022, 16 (02) : 301 - 324
  • [6] Robust logistic zero-sum regression for microbiome compositional data
    G. S. Monti
    P. Filzmoser
    [J]. Advances in Data Analysis and Classification, 2022, 16 : 301 - 324
  • [7] Kernel Methods for Regression Analysis of Microbiome Compositional Data
    Chen, Jun
    Li, Hongzhe
    [J]. TOPICS IN APPLIED STATISTICS, 2013, 55 : 191 - 201
  • [8] Classical and Robust Regression Analysis with Compositional Data
    K. G. van den Boogaart
    P. Filzmoser
    K. Hron
    M. Templ
    R. Tolosana-Delgado
    [J]. Mathematical Geosciences, 2021, 53 : 823 - 858
  • [9] Classical and Robust Regression Analysis with Compositional Data
    van den Boogaart, K. G.
    Filzmoser, P.
    Hron, K.
    Templ, M.
    Tolosana-Delgado, R.
    [J]. MATHEMATICAL GEOSCIENCES, 2021, 53 (05) : 823 - 858
  • [10] Bayesian Graphical Compositional Regression for Microbiome Data
    Mao, Jialiang
    Chen, Yuhan
    Ma, Li
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 610 - 624