Radiomics and artificial intelligence in prostate cancer: new tools for molecular hybrid imaging and theragnostics

被引:0
|
作者
Virginia Liberini
Riccardo Laudicella
Michele Balma
Daniele G. Nicolotti
Ambra Buschiazzo
Serena Grimaldi
Leda Lorenzon
Andrea Bianchi
Simona Peano
Tommaso Vincenzo Bartolotta
Mohsen Farsad
Sergio Baldari
Irene A. Burger
Martin W. Huellner
Alberto Papaleo
Désirée Deandreis
机构
[1] University of Torino,Medical Physiopathology — A.O.U. Città della Salute e della Scienza di Torino, Division of Nuclear Medicine, Department of Medical Science
[2] S. Croce e Carle Hospital,Nuclear Medicine Department
[3] University Hospital Zurich,Department of Nuclear Medicine
[4] University of Zurich,Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and of Morpho
[5] University of Messina,Functional Imaging
[6] Fondazione Istituto G. Giglio,Nuclear Medicine Unit
[7] Ct.da Pietrapollastra Pisciotto,Medical Physics Department
[8] Central Bolzano Hospital,Department of Radiology
[9] Fondazione Istituto G. Giglio,Nuclear Medicine
[10] Ct.da Pietrapollastra,Department of Nuclear Medicine
[11] Central Hospital Bolzano,undefined
[12] Kantonsspital Baden,undefined
关键词
Prostate cancer; Positron emission tomography; Artificial intelligence; Radiomics; Theragnostics;
D O I
暂无
中图分类号
学科分类号
摘要
In prostate cancer (PCa), the use of new radiopharmaceuticals has improved the accuracy of diagnosis and staging, refined surveillance strategies, and introduced specific and personalized radioreceptor therapies. Nuclear medicine, therefore, holds great promise for improving the quality of life of PCa patients, through managing and processing a vast amount of molecular imaging data and beyond, using a multi-omics approach and improving patients’ risk-stratification for tailored medicine. Artificial intelligence (AI) and radiomics may allow clinicians to improve the overall efficiency and accuracy of using these “big data” in both the diagnostic and theragnostic field: from technical aspects (such as semi-automatization of tumor segmentation, image reconstruction, and interpretation) to clinical outcomes, improving a deeper understanding of the molecular environment of PCa, refining personalized treatment strategies, and increasing the ability to predict the outcome. This systematic review aims to describe the current literature on AI and radiomics applied to molecular imaging of prostate cancer.
引用
收藏
相关论文
共 50 条
  • [1] Radiomics and artificial intelligence in prostate cancer: new tools for molecular hybrid imaging and theragnostics
    Liberini, Virginia
    Laudicella, Riccardo
    Balma, Michele
    Nicolotti, Daniele G.
    Buschiazzo, Ambra
    Grimaldi, Serena
    Lorenzon, Leda
    Bianchi, Andrea
    Peano, Simona
    Bartolotta, Tommaso Vincenzo
    Farsad, Mohsen
    Baldari, Sergio
    Burger, Irene A.
    Huellner, Martin W.
    Papaleo, Alberto
    Deandreis, Desiree
    [J]. EUROPEAN RADIOLOGY EXPERIMENTAL, 2022, 6 (01)
  • [2] Applications of Artificial Intelligence and Radiomics in Molecular Hybrid Imaging and Theragnostics for Neuro-Endocrine Neoplasms (NENs)
    Balma, Michele
    Laudicella, Riccardo
    Gallio, Elena
    Gusella, Sara
    Lorenzon, Leda
    Peano, Simona
    Costa, Renato P.
    Rampado, Osvaldo
    Farsad, Mohsen
    Evangelista, Laura
    Deandreis, Desiree
    Papaleo, Alberto
    Liberini, Virginia
    [J]. LIFE-BASEL, 2023, 13 (08):
  • [3] Artificial intelligence and radiomics in pediatric molecular imaging
    Wagner, Matthias W.
    Bilbily, Alexander
    Beheshti, Mohsen
    Shammas, Amer
    Vali, Reza
    [J]. METHODS, 2021, 188 : 37 - 43
  • [4] Editorial: The Application of Radiomics and Artificial Intelligence in Cancer Imaging
    Huang, Hong
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [5] Applications of artificial intelligence in prostate cancer imaging
    Baltzer, Pascal A. T.
    Clauser, Paola
    [J]. CURRENT OPINION IN UROLOGY, 2021, 31 (04) : 416 - 423
  • [6] The Novel Green Learning Artificial Intelligence for Prostate Cancer Imaging A Balanced Alternative to Deep Learning and Radiomics
    Kaneko, Masatomo
    Magoulianitis, Vasileios
    Ramacciotti, Lorenzo Storino
    Raman, Alex
    Paralkar, Divyangi
    Chen, Andrew
    Chu, Timothy N.
    Yang, Yijing
    Xue, Jintang
    Yang, Jiaxin
    Liu, Jinyuan
    Jadvar, Donya S.
    Gill, Karanvir
    Cacciamani, Giovanni E.
    Nikias, Chrysostomos L.
    Duddalwar, Vinay
    Kuo, C-C. Jay
    Gill, Inderbir S.
    Abreu, Andre Luis
    [J]. UROLOGIC CLINICS OF NORTH AMERICA, 2024, 51 (01) : 1 - 13
  • [7] The Application of Radiomics and AI to Molecular Imaging for Prostate Cancer
    Tapper, William
    Carneiro, Gustavo
    Mikropoulos, Christos
    Thomas, Spencer A.
    Evans, Philip M.
    Boussios, Stergios
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2024, 14 (03):
  • [8] Pancreatic cancer, radiomics and artificial intelligence
    Marti-Bonmati, Luis
    Cerda-Alberich, Leonor
    Perez-Girbes, Alexandre
    Beveridge, Roberto Diaz
    Oron, Eva Montalva
    Rojas, Judith Perez
    Alberich-Bayarri, Angel
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1137):
  • [9] Radiomics and artificial intelligence in breast imaging: a survey
    Zhang, Tianyu
    Tan, Tao
    Samperna, Riccardo
    Li, Zhang
    Gao, Yuan
    Wang, Xin
    Han, Luyi
    Yu, Qifeng
    Beets-Tan, Regina G. H.
    Mann, Ritse M.
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 1) : 857 - 892
  • [10] Radiomics and Artificial Intelligence for PET imaging analysis
    d'Amico, Andrea
    Borys, Damian
    Gorczewska, Izabela
    [J]. NUCLEAR MEDICINE REVIEW, 2020, 23 (01) : 36 - 39